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The omitted variables problem is one of regression analysis’ most serious problems. The standard
approach to the omitted variables problem is to find instruments, or proxies, for the omitted
variables, but this approach makes strong assumptions that are rarely met in practice. This
paper introduces best projection reiterative truncated projected least squares (BP-RTPLS), the
third generation of a technique that solves the omitted variables problem without using proxies
or instruments. This paper presents a theoretical argument that BP-RTPLS produces unbiased
reduced form estimates when there are omitted variables. This paper also provides simulation
evidence that shows OLS produces between 250% and 2450% more errors than BP-RTPLS when
there are omitted variables and when measurement and round-off error is 1 percent or less. In an
example, the government spending multiplier, ∂GDP/∂G, is estimated using annual data for the
USA between 1929 and 2010.

1. Introduction

One of regression analysis’ most serious problems occurs when omitted variables affect
the relationship between the dependent variable and included explanatory variables.1 If
researchers estimate without considering that the true slope, β1, is affected by other variables,
then they obtain a slope estimate that is a constant,2 in contrast to the true slope which varies
with q. In this case the regression coefficients are hopelessly biased and all statistics are inac-
curate (X′e /= 0):

Y = α0 + β1X, (1.1)

β1 = α1 + α2q
m, (1.2)

Y = α0 + α1X + α2Xqm. (1.3)
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By substituting (1.2) into (1.1) to produce (1.3), we can see that an easy way to model this
omitted variables problem is to use an interaction term, α2Xqm, which is what we do for the
remainder of this paper. However, it is important to realize that this modeling approach cap-
tures a much more general problem—a problem that occurs any time omitted variables affect
the true slope.

The standard approach to dealing with the omitted variables problem is to use instru-
mental variables or proxies. However, to correctly use these approaches, the researcher
must know how to correctly model the omitted variable’s influence on the dependent vari-
able and the relationship between the instruments and the omitted variables. These require-
ments are often impossible to meet as many researchers do not even know what important
variables they are omitting, much less how to correctly model their influence on the
dependent variables via proxies.3 One implication of Kevin Clarke’s papers [1, 2] is that
including additional proxies may increase or decrease the bias of the estimated coefficients.
The approach taken in this paper avoids the problems discussed by Clarke by directly using
the combined effects of all omitted variables instead of trying to replace individual omitted
variables.

Specifically, this paper introduces the third generation of a technique which produces
reduced form estimates of ∂Y/∂X, which vary from observation to observation due to the
influence of omitted variables, without using instruments and, thus, without having to make
the strong assumptions required by instrumental variables. In essence, this technique recog-
nizes that (for all observations associated with a given value for the known independent vari-
able) the vertically highest observations will be associated with values for the omitted vari-
ables that increase Y the most and that the observations on the bottomwill be associated with
omitted variable values that increase Y the least.

Section 2 of this paper provides an intuitive explanation of this new technique, named
“best projection reiterative truncated projected least squares” (BP-RTPLS), and provides
a very brief survey of the literature concerning the predecessors to BP-RTPLS. Section 3
presents a theoretical argument that BP-RTPLS estimates will be unbiased. Section 4 presents
simulation results that show that ordinary least squares (OLS) produce error that is between
250% and 2450% of the error of BP-RTPLS when there is 1 percent measurement/round-
off error, when sample sizes of 100 or 500 observations are used, and when the omitted
variable makes a 10 percent, 100 percent, or 1000 percent difference to the true slope. Section 5
provides an example, and Section 6 concludes.

2. An Intuitive Explanation of BP-RTPLS and Literature Survey

The key to understanding BP-RTPLS is Figure 1. To construct Figure 1, we generated two
series of random numbers, X and q, which ranged from 0 to 100. We then defined

Y = 100 + 10X + 0.4qX. (2.1)

Thus the true value for ∂Y/∂X equals 10+0.4q. Since q ranges from 0 to 100, the true slope will
range from 10 (when q = 0) to 50 (when q = 100). Thus q makes a 500 percent difference to
the slope. In Figure 1, we identified each point with that observation’s value for q. Notice that
the upper edge of the data corresponds to relatively large qs − 92, 98, 98, and 95. The lower
edge of the data corresponds to relatively small qs − 1, 1, 1, 1, and 6. This makes sense since
as q increases so does Y , for any given X. For example, when X = 85, reading the values of
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Figure 1: The intuition behind 4D-RTPLS.

q from top to bottom produces 91, 84, 76, 49, 33, and 10. Thus the relative vertical position of
each observation is directly related to the values of q.4

An alternative way to view Figure 1 is to realize that, since the true value for ∂Y/∂X
equals 10 + 0.4q, the slope, ∂Y/∂X, will be at its greatest value along the upper edge of the
data where q is largest and the slope will be at its smallest value along the bottom edge of the
data where q is smallest. This implies that the relative vertical position of each observation,
for any given X, is directly related to the true slope.

Now imagine that we do not know what q is and that we have to omit it from our
analysis. In this case, OLS produces the following estimated equation: Y = 87.3+ 30.13X with
an R-squared of 0.6065 and a standard error of the slope of 2.452. On the surface, this OLS
regression looks successful, but it is not. Remember that the true equation is Y = 100 + 10X +
0.4qX. Since q ranges from 0 to 100, the true slope (true derivative) ranges from 10 to 50 and



4 Advances in Decision Sciences

OLS produced a constant slope of 30. OLS did the best it could, given its assumption of a
constant slope-OLS produced a slope estimate of approximately 10 + 0.4E(q) = 10 + 0.4(50) =
30. However, OLS is hopelessly biased by its assumption of a constant slope when, in truth,
the slope is varying.

Although OLS is hopelessly biased when there are omitted variables that interact
with the included variables, Figure 1 provides us with a very important insight—even when
we do not know what the omitted variables are, even when we have no clue how to
model the omitted variables or measure them, and even when there are no proxies for the
omitted variables, Figure 1 shows us that the relative vertical position of each observation
contains information about the combined influence of all omitted variables on the true slope.
BP-RTPLS exploits this insight. We will first explain 4D-RTPLS (Four Directional RTPLS),
UD-RTPLS (Up Down RTPLS), and LR-RTPLS (Left Right RTPLS). BP-RTPLS is the best
estimate produced by 4D-RTPLS, UD-RTPLS, and LR-RTPLS.

4D-RTPLS begins with a procedure similar to two stage least squares (2SLS). 2SLS is
used to eliminate simultaneous equation bias. In the first stage of 2SLS, all right hand side
endogenous variables are regressed by all exogenous variables. The data are plugged into
the resulting equations to create instruments for the right hand side endogenous variables.
These instruments are then used in the second stage regression. The first stage procedure
cuts off and discards all the variation in the right hand side endogenous variables that is not
correlated with the exogenous variables.

In a similar fashion, 4D-RTPLS draws a frontier around the top data points in Figure 1.
It then projects all the data vertically up to this frontier. By projecting the data to the frontier,
all the data would correspond to the largest values for q. However, there is a possibility that
some of the observations will be projected to an upper right hand side horizontal section of
the frontier. For example, the 80 which is closest to the upper right hand corner of Figure 1
would be projected to a horizontal section of the frontier. This horizontal section does not
show the true relationship betweenX and Y , and it needs to be eliminated (truncated) before
a second stage regression is run through the projected data. This second stage regression
(OLS) finds a truncated projected least squares (TPLS) slope estimate for when q is at its most
favorable level and this TPLS slope estimate is then appended to the data for the observations
that determined the frontier.

The observations that determined the frontier are then eliminated and the procedure
repeated. We can visualize this removal as “peeling away” the upper frontier of the data
points. As the process is iterated, we peel away the data in successive layers, working
downward through the set of data points. The first iteration finds a TPLS slope estimate when
the omitted variables cause Y to be at its highest level, ceteris paribus. The second iteration
finds a TPLS slope estimate when the omitted variables cause Y to be at its second highest
level, and so forth. This process is stopped when an additional regression would use fewer
than ten observations (the remaining observations will be located at the bottom of the data). It
is important to realize that the omitted variable, q, in this process will represent the combined
influence of all forces that are omitted from the analysis. For example, if there are 1000 forces
that are omitted where 600 of them are positively related to Y and 400 are negatively related
to Y , then the first iteration will capture the effect of the 600 variables being at their largest
possible levels and the 400 being at their lowest possible levels.

Just as the entire dataset can be peeled down from the top, the entire dataset also
can be peeled up from the bottom. Peeling up from the bottom would involve projecting
the original data downward to the lower boundary of the data, truncating off any lower left
hand side horizontal region, running an OLS regression through the truncated projected data
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to find a TPLS estimate for the observations that determined the lower boundary of the data,
eliminating those observations that determined the lower boundary, and then reiterating this
process until there are fewer than 10 observations left at the top of the data. By peeling the
data from both the top to the bottom and from the bottom to the top, the observations at both
the top and the bottom of the data will have an influence on the results. Of course, some of the
observations in the middle of the data will have two TPLS estimated slopes associated with
them—one from peeling the data downward and the other from peeling the data upward.

Above, we discussed projecting the data upward and downward; however, an alter-
native procedure would project the data to the left and to the right. 4D-RTPLS projects the
data 4 different ways, upwards when peeling the data from the top, downward when peeling
the data from the bottom, leftward when peeling the data from the left, and rightward when
peeling the data from the right. When peeling the data from the right or left, any vertical
sections of the frontier are truncated off for the same reasons that horizontal regions were
truncated off when peeling the data downward and upward.

Once the entire dataset has been peeled from the top, bottom, left, and right, all the
resulting TPLS estimates (with their associated data) are put into a final dataset. These TPLS
estimates are then made the dependent variable in a final regression in which 1/X and
Y/X are the explanatory variables. The data are plugged back into this final regression to
produce a separate 4D-RTPLS estimate for each observation. To understand the role of the
final regression, consider Figure 1 again. If all the observations on the upper frontier had been
associated with exactly the same omitted variable values (perhaps 98), then the resulting
TPLS estimate would perfectly fit all of the observations it was associated with. However,
Figure 1 shows that the observations on the upper frontier were associated with omitted
variable values of 92, 98, 98, and 95. The resulting TPLS slope estimate would perfectly fit
a q value of approximately5 96 (the mean of 92, 98, 98, and 95). When a TPLS estimate for a
q of 96 is associated with qs of 92, 98, 98, and 95, some random variation (both positive and
negative variation) remains. By combining the results from all iterations when peeling down,
up, right, and left and then conducting this final regression, this random variation is elimi-
nated.

Realize that Y is codetermined by X and q. Thus the combination of X and Y should
contain information about q. This final regression exploits this insight in order to better
capture the influence of q. The exact form of this final regression is justified by the following
derivation.

In (2.2), the part usually omitted (α2X
nqm) could be of many different functional forms

(“n” and “m” could be any real number, positive, or negative):

Y = α0 + α1X + α2X
nqm, (2.2)

∂Y

∂X
= α1 + nα2X

n−1qm (derivative of (2.2)), (2.3)

Y

X
=

α0

X
+ α1 + α2X

n−1qm
(
dividing (2.2) by X

)
, (2.4)

α1 + α2X
n−1qm =

Y

X
− α0

X

(
rearranging (2.4)

)
, (2.5)

∂Y

∂X
= fn

(
Y

X
,
1
X

)
(from (2.3) and (2.5)). (2.6)
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If n = 1, then the right hand side of (2.3) perfectly matches the left hand side of (2.5) implying
that just Y/X and 1/X should be in (2.6). However, if n/= 1, including either Y or Y and X
might produce better estimates.6

The mathematical equations used to calculate the frontier for each iteration of 4D-
RTPLS are as follows: denote the dependent variable of observation “i” by Yi, i = 1, . . . , I, and
the known independent variable of that observation byXi, i = 1, . . . , I. Consider the following
variable returns to scale, output-oriented DEA problem, which is used when peeling the data
downward:

maxΦ

subject to ΣiλiXi ≤ Xo

ΦY o ≤ ΣiλiYi

Σiλi = 1; λi ≥ 0, i = 1, . . . , I.

(2.7)

The ratio of maximally expanded dependent variable to the actual dependent variable (Φ)
provides a measure of the influence of unfavorable omitted variables on each observation.
This problem is solved I times, once for each observation in the sample. For observation
“◦” under evaluation, the problem seeks the maximum expansion of the dependent variable
Y ◦ consistent with best practice observed in the sample, that is, subject to the constraints
in the problem. In order to project each observation upward to the frontier, its Y value is
multiplied by Φ (for (2.7), Φ will be greater than or equal to 1). Peeling the data from the
right is accomplished by using (2.7) after switching the positions of X and Y (in other words,
everyX in (2.7)would refer to the dependent variable and every Y in (2.7)would refer to the
independent variable when peeling from the right side).

The variable returns to scale, input-oriented DEA problem used when peeling the data
from the left is

min Φ

subject to ΣkλkYk ≥ Yi

ΦXi ≥ ΣkλkXk

Σiλi = 1; λk ≥ 0, k = 1, . . . , I.

(2.8)

To project the data to the frontier when peeling from the left, theX value for each observation
should be multiplied by Φ (for (2.8), Φ will be less than or equal to 1). Observations on the
frontier will have a Φ = 1 for both (2.7) and (2.8). Finally, to peel the data upward from the
bottom, (2.8)will be used after switching the positions of Y and X.

4D-RTPLS projected the data up, down, left, and right. However, if a plot of the data
shows a tall and thin column, then it might be best to just project up and down. For example, if
q has a relatively large effect on the true slope, then the data will appear as a tall column with
more efficient observations at the top of this column than at the sides. By projecting the data
up and down, the data will be projected to where the efficient points are more concentrated.
The more concentrated the efficient points are, the more likely they are to have similar q
values and thus the resulting TPLS estimates will be more accurate. In this case, UD-RTPLS
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(Up Down RTPLS which only projects up and down) will produce better estimates than 4D-
RTPLS, ceteris paribus.

For similar reasons, when q has a relatively small effect on the true slope, the data
will appear flat and fat, the efficient points will tend to be concentrated on the sides of the
data, and LR-RTPLS (Left Right RTPLS) is likely to produce better estimates than 4D-RTPLS.
Any round-off and measurement error that adds vertically to the value of Y would decrease
the accuracy of UD-RTPLS more than it decreased the accuracy of LR-RTPLS (because LR-
RTPLS would not be going the same direction as the error was added). BP-RTPLS (best
projection RTPLS) merely picks the direction of projection (UD, LR, or 4D) that produces
the best estimates.

BP-RTPLS generates reduced form estimates that include all the ways that X and
Y are correlated. Thus, even when many variables interact via a system of equations, a
researcher using BP-RTPLS does not have to discover and justify that system of equations.
In contrast, traditional regression analysis theoretically must include all relevant variables in
the estimation and the resulting slope estimate for dy/dx is for the effects of just x-holding all
other variables constant. BP-RTPLS′ reduced form estimates are not substitutes for traditional
regression analysis’ partial derivative estimates. Instead BP-RTPLS and traditional regression
estimates are compliments which capture different types of information. BP-RTPLS has the
disadvantage of not being able to tell the researcher the mechanism by which X affects Y . On
the other hand, BP-RTPLS has the advantage of not having to model and find data for all the
forces that can affect Y in order to estimate ∂Y/∂X. Both BP-RTPLS and traditional regression
techniques find “correlations.” It is impossible for either one of them to prove “causation.”

A brief survey of the literature leading up to BP-RTPLS is now provided.7 Branson
and Lovell [3] introduce the idea that by drawing a line around the top of a dataset and
projecting the data to this line, one can eliminate variations in Y that are due to variations in
omitted variables. Branson and Lovell projected the data to the left, they did not truncate
off any vertical section of the frontier, nor did they use a reiterative process. Leightner
[4] projected the data upward, discovered that truncating off any horizontal section of the
frontier improved the results, and instituted a reiterative process. He named the resulting
procedure “Reiterative Truncated Projected Least Squares” (RTPLS).

Leightner and Inoue [5] ran simulation tests which show that RTPLS produces (on
average) less than half the error of OLS when there are omitted variables that interact with
the included variables under a wide range of conditions. Leightner and Inoue [5] also explain
how situations where Y is negatively related to X can be handled, how omitted variables
that can change the sign of the slope can be handled, and how the influence of additional
right hand variables can be eliminated before conducting RTPLS. Leightner [6] introduces
bidirectional reiterative truncated least squares (BD-RTPLS)which peeled the data from both
the top and the bottom. Leightner [7] shows how the central limit theorem can be used to
generate confidence intervals for groups of BD-RTPLS estimates. Published studies that used
either RTPLS or BD-RTPLS in applications include Leightner [4, 6–12] and Leightner and
Inoue [5, 13–15].

3. A Theoretical Argument That BP-RTPLS Is Unbiased

We will begin this section by explaining the conditions under which BP-RTPLS produces
estimates that perfectly equal the true value of the slope. We will then argue that relaxing
those conditions does not introduce bias into BP-RTPLS estimates. Therefore wewill conclude
that BP-RTPLS produces unbiased estimates. Figure 2 will be used to illustrate our argument.
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Figure 2: When TPLS works perfectly.

If there is no measurement and round-off error and if the smallest value and largest
values for the known independent variable are associated with every possible value for the
omitted variable, q, then UD-RTPLS, LR-RTPLS, 4D-RTPLS, and BP-RTPLS will all produce
the same estimates which perfectly match the true slope. Figure 2 was generated by making
qs a member of the set {90, 80, 70, . . . , 10}, associating the smallest X, which had the value
of 1, with each of those qs and then associating the largest X, which had the value of 98,
with each of those qs. The remaining observations were created by randomly generating Xs
between 1 and 98 and randomly associating one of the qs with each observation.

In Figure 2, the first iteration when peeling the data downward would produce the
true slope for all of the observations that determined the frontier in that iteration. For both
Figures 1 and 2, Y = 100 + 10X + 0.4qX; thus ∂Y/∂X = 10 + 0.4q = 10 + 0.4(90) = 46 for
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the first iteration. The second iteration will also find the true slope for the observations on
its frontier—a slope of 10 + 0.4(80) = 42. This will be true for all iterations. Furthermore, the
exact same perfect slope will be found when the data are projected to the left when peeling
from the left. Moreover, when peeling the data upwards and from the right, all iterations will
continue to produce a perfect slope. The reason that each iteration works perfectly is that
the two ends of each frontier contain identical omitted variable values which correspond to
the largest (when peeling down or from the left) or smallest (when peeling up or from the
right) omitted variable values remaining in the dataset; thus a frontier between the smallest
and largest Xs will be a straight line with a slope that perfectly matches the true ∂Y/∂X of
every observation on the frontier. In this case, there is no need to run the final regression of
BP-RTPLS because each TPLS estimate is perfect. However if that final regression is run any
way, it will produce a R-squared of 1.0 and plugging the data back into the resulting equation
will regenerate the TPLS estimate from each iteration.

Now that we have established under what conditions BP-RTPLS produces estimates
that perfectly match the true slope, we will discuss what happens when those conditions are
not met. Changes in these conditions can be grouped into three categories: (1) changes for
which the TPLS estimates continue to perfectly match the true slope, (2) changes that will
produce TPLS estimates that are greater than the true slope for observations with relatively
small Xs and that are less than the true slope for observations with relatively large Xs, and
(3) changes for which all the TPLS estimates of a given iteration are greater than (or less than)
the true slope. We will provide reasons why each of these types of changes will not introduce
systematic bias into the final BP-RTPLS estimates.

Omitting an observation from the middle of the frontier will not affect the TPLS
slope estimates (to see this, eliminate any, or all, of the middle of the frontier observations
that correspond to a q of 90 in Figure 2). Likewise, if the observation corresponding to the
upper right hand 90 in Figure 2 is eliminated, then the first iteration when peeling the data
downward would continue to generate the true slope because eliminating that observation
would just create a small horizontal region in the first iteration which would be truncated off.

However, if the three observations for q = 90 in the upper right part of Figure 2 were
all eliminated, then the observation identified by an 80 in the upper right would define the
upper right side of the first frontier. In this case, the resulting TPLS estimate of the slope for
the first iteration would be slightly too small for the observations identified with 90 s and
too big for the upper most observation identified by an 80.8 The same phenomenon happens
when we are peeling upward (or from the right), if the observation identified by a q of 10 on
the right hand side was eliminated. In this case the observation identified by a 20 on the far
right side would define the right side of the first frontier; as a consequence, the first iteration
when peeling upward (or from the right) would generate a slope that was slightly too large
for the observations with a q of 10 but too small for the observation with a q of 20. In both
of these cases, the TPLS estimated slope of the observations with relatively small Xs are too
large and the TPLS estimated slope of the observations with relatively large Xs are too small.
It is important to note that, since the TPLS slope estimate for this iteration is found using OLS,
the relative weight of the slopes overestimated in this iteration should approximately equal
the relative weight of the slopes underestimated. The relative weight of the overestimation
would cancel out with the relative weight of the underestimation when the final regression
of the BP-RTPLS process forces the results to go through the origin, thus eliminating any
possible bias from this phenomenon.9

The third type of changes in Figure 2 would cause all of the TPLS estimates for a
given iteration to be larger than (or smaller than) the true slope. For example, when the



10 Advances in Decision Sciences

dataset is peeled downward (or from the left) if all the observations corresponding to X = 1
were eliminated, then the lower left hand observation identified by a 10 would define the
lower left edge of the first frontier. In this case TPLS would generate a slope estimate that
was slightly too large for the observations identified by 90 s and much too large for the
one observation identified by the 10. Likewise when peeling the data upwards (or from the
right) if all of the observations identified with an X = 1 were eliminated and the next two
observations identified by a 10 (in the lower left part of Figure 2) were eliminated, then the
observation identified by a 30 in the lower left side of Figure 2 would define the left hand
edge of the first frontier. In this case the TPLS slope estimate would be slightly too small for
all the observations identified by a 10 on the frontier and much too small for the observation
identified by the 30. The incidence and weight of TPLS estimates that are greater than the true
slope should be approximately equal to the incidence and weight of TPLS estimates that are
less than the true slope when the final BP-RTPLS estimate is made. Thus these inaccuracies
in the TPLS estimates should also be eliminated when the final BP-RTPLS estimate is made.

None of the three categories of changes discussed above would add a systematic bias
to BP-RTPLS estimates. Additional types of changes are possible, like eliminating observa-
tions on both ends of the frontier for a given iteration; however, these types of changes would
cause effects that are some combination of the effects discussed above. Finally there is no
reason why “random” error would add systematic bias either.

4. Simulation Results

Our first set of simulations are based on computer generated values of X and q which are
uniform random numbers ∼U[0, 10], where 0 is the lower bound of the distribution and 10
is the upper bound. Measurement and round-off error, e, is generated as a normal random
number whose standard deviation is adjusted to be 0%, 1%, or 10% of variable X’s standard
deviation. We consider 18 cases—all the combinations where (1) the omitted variable (q)
makes a 10%, 100%, or a 1000% difference in ∂Y/∂X, (2) where measurement and round-off
error is 0%, 1%, or 10% of X, and (3) either 100 observations or 500 observations are used.
Equations (4.1), (4.2), and (4.3) are used to model when the omitted variable makes a 10%,
100%, and 1000% difference in ∂Y/∂X, respectively.

Consider

Y = 10 + 1.0X + 0.01qX + e, (4.1)

Y = 10 + 1.0X + 0.1qX + e, (4.2)

Y = 10 + 1.0X + 1.0qX + e, (4.3)

∂Y/∂X for (4.2) would be 1 + 0.1q; since q ranges from 0 to 10, the true slope will range from
1 (when q = 0) to 2 (when q = 10). Thus, for (4.2), the omitted variable, q, makes a 100%
difference to the true slope. For similar reasons q makes a 10% difference to the real slope in
(4.1) and approximately a 1000% difference in (4.3). Total error for the ith observation would
equal the error from the omitted variable plus the added measurement and round-off error.

Tables 1 and 2 present the mean of the absolute value of the error and the standard
deviation of the error for 18 sets of 5000 simulations each where the errors fromOLS and from
[][]RTPLs are defined by (4.4) and (4.5), respectively. In these equations, “OLS” refers to the
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OLS estimate of ∂Y/∂X when q is omitted and “True” refers to the true slope as calculated
by plugging each observation’s data into the derivatives of (4.1)–(4.3) above. “[][]RTPLS” is
the [][]RTPLS estimate of ∂Y/∂X, where “BD,” “UD,” “LR,” or “4D” could be substituted for
“[][].”

DefineEols
i =

(OLS − Truei)
Truei

. (4.4)

DefineE[ ][ ]RTPLS
i =

([ ][ ]RTPLS − Truei)
Truei

. (4.5)

The mean absolute value of the percent OLS error (Table 1, row 1) was calculated from
(4.6), where “n” is the number of observations in a simulation and “m” is the number of
simulations:

∑m
j=1

[∑n
i=1

∣∣∣EOLS
i

∣∣∣/n
]

m
. (4.6)

Equation (4.7) was used to calculate the standard deviation of OLS error (Table 2, row 1),
where E(EOLS

i ) = the mean of EOLS
i = (

∑n
i=1 E

OLS
i )/n.

Consider

{
∑M

j=1

[(
∑n

i=1

(
EOLS
i − E

(
EOLS
i

))2
)
/(n − 1)

]1/2}

m
.

(4.7)

The absolute value of the mean error (Table 1) and the standard deviation (Table 2) of
[][]RTPLS error (Row 2)were calculated with (4.5)–(4.7), respectively, where “E[][]RTPLS

i ” was
substituted for “EOLS

i .”
The results when 100 observations are used in each simulation are shown in Panel

A, and the results when 500 observations are used are shown in Panel B. Columns 1–3, 4–6,
and 7–9 correspond to when the omitted variable makes a 10%, 100%, and 1000% difference
in ∂Y/∂X, respectively. No measurement and round-off error was added for columns 1, 4,
and 7; 1% measurement and round-off error was added for columns 2, 5, and 8; and 10%
measurement and round-off error was added for columns 3, 6, and 9. Row one of Tables 1
and 2 presents the OLS results when q was omitted. Row 2a presents the results of using
BD-RTPLS, the second generation of this technique.10 Rows 2b, 2c, and 2d present the results
of using UD-RTPLS, LR-RTPLS, and 4D-RTPLS, respectively. When running the simulations
for rows 2b, 2c, and 2d, three different sets of possible explanatory variables for the final
regression were considered: {1/X, Y/X}, {1/X, Y/X, Y}, and {1/X, Y/X, Y,X}. The set of
final regression explanatory variables that produced the largest OLS/[][]RTPLS ratio for
rows 2b, 2c, and 2d of a given column is what is reported in that column for Tables 1 and
2. This set of final regression explanatory variables was 1/X, Y/X, Y , and X for column 3
and just 1/X and Y/X for all other columns. Row 2e and 3e for BP-RTPLS (Best Projection-
RTPLS) just repeats the result in the three lines above it that corresponds to the largest
OLS/[][]RTPLS ratio.
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Table 1: The mean of the absolute value of the error.

Column number 1 2 31 4 5 6 7 8 9
Importance of omitted q 10% 10% 10% 100% 100% 100% 1000% 1000% 1000%
Size of measurement e 0% 1% 10% 0% 1% 10% 0% 1% 10%

Panel A: 100 observations in each simulation; 5000 simulations
(1) Mean % OLS error 0.0240 0.0240 0.0249 0.1779 0.1779 0.1779 0.7143 0.7143 0.7143
(2) Mean % [][]RTPLS error

(a) BD-RTPLS∗2 0.0131 0.0191 0.0253 0.0787 0.0827 0.1347 0.4463 0.4469 0.4603
(b) UD-RTPLS3 0.0044 0.0182 0.0463 0.0311 0.0359 0.1557 0.0715 0.0717 0.0893
(c) LR-RTPLS4 0.0042 0.0179 0.0464 0.0424 0.0455 0.1441 0.1856 0.1858 0.1906
(d) 4D-RTPLS5 0.0042 0.0180 0.0462 0.0292 0.0335 0.1467 0.1119 0.1122 0.1225
(e) BP-RTPLS6 0.0042 0.0179 0.0292 0.0335 0.1441 0.0715 0.0717 0.0893

(3) OLS/[][]RTPLS error
(a) BD-RTPLS∗ 1.90 1.31 1.00 2.42 2.31 1.41 2.03 2.03 1.96
(b) UD-RTPLS 12.77 2.74 0.59 12.58 8.64 2.19 18.92 17.66 11.51
(c) LR-RTPLS 14.25 2.82 0.59 9.50 6.76 2.58 3.21 3.09 3.32
(d) 4D-RTPLS 12.97 2.80 0.59 13.78 9.34 2.54 11.03 9.93 7.83
(e) BP-RTPLS 14.25 2.82 13.78 9.34 2.58 18.92 17.66 11.51

Panel B: 500 observations in each simulation; 5000 simulations
(1) Mean % OLS error 0.0239 0.0239 0.0241 0.1769 0.1769 0.1769 0.7111 0.7111 0.7111
(2) Mean % [][]RTPLS error

(a) BD-RTPLS∗ 0.0106 0.0215 0.0244 0.0563 0.0709 0.1535 0.3324 0.3336 0.3840
(b) UD-RTPLS 0.0026 0.0302 0.0472 0.0291 0.0426 0.2994 0.0374 0.0390 0.0885
(c) LR-RTPLS 0.0020 0.0289 0.0472 0.0483 0.0521 0.2574 0.1942 0.1944 0.1978
(d) 4D-RTPLS 0.0019 0.0295 0.0470 0.0144 0.0253 0.2759 0.0869 0.0873 0.1056
(e) BP-RTPLS 0.0019 0.0289 0.0144 0.0253 0.2574 0.0374 0.0390 0.0885

(3) OLS/[][]RTPLS error
(a) BD-RTPLS∗ 2.30 1.13 0.99 3.09 2.60 1.16 2.47 2.46 2.17
(b) UD-RTPLS 21.14 2.29 0.56 9.50 5.48 0.86 29.91 24.49 11.26
(c) LR-RTPLS 34.58 2.55 0.56 3.03 3.75 1.67 1.95 1.95 2.62
(d) 4D-RTPLS 39.79 2.45 0.57 34.86 14.74 1.27 5.25 5.31 7.37
(e) BP-RTPLS 39.79 2.55 34.86 14.74 1.67 29.91 24.49 11.26

1
Each row was calculated with the following three sets of explanatory variables for the final regression: {1/X, Y/X}, {1/X,
Y/X, Y}, and {1/X, Y/X, Y ,X}. Column 3 shows the results when 1/X, Y/X, Y , andX are used as the explanatory variables
in the final regression because the approach with the greatest OLS/[][]RTPLS error ratio always used those variables for
column 3. For all other columns, the approach with the greatest OLS/[][]RTPLS error ratio always used solely 1/X and Y/X
and the corresponding results are those reported here.
2BD-RTPLS∗: UD-RTPLS except a constant is used in the final regression. Unlike BD-RTPLS, BD-RTPLS∗ does not truncate
off the 3% of the observations corresponding to the smallest (largest) Xs when peeling down (up).
3UD-RTPLS: RTPLS where the data are solely projected up and down, not left and right.
4LR-RTPLS: RTPLS where the data are solely projected to the left and right, not up and down.
54D-RTPLS: RTPLS where the data are projected up, down, left, and right.
6BP-RTPLS: the results for the approach—UD-RTPLS, LR-RTPLS, or 4D-RTPLS—that produces the greatest OLS/[][]RTPLS
ratio.

When comparing the relative absolute value of the mean error (Table 1) and standard
deviation (Table 2) of OLS error to [][]RTPLS error by observation, “Ln(|EOLS

i |/|Ei
[][]RTPLS|)”

was substituted for |EOLS
i | in (4.6) and for EOLS

i in (4.7) and then the antilog of the result was
found (row 3 of Tables 1 and 2, resp.).11 The natural log of the ratio of OLS to [][]RTPLS error
had to be used in order to center this ratio symmetrically around the number 1. Consider a
two observation example where the ratio is 5/1 for one observation and 1/5 for the other
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Table 2: The standard deviation of the error.

Column number 1 2 31 4 5 6 7 8 9
Importance of omitted q 10% 10% 10% 100% 100% 100% 1000% 1000% 1000%
Size of measurement e 0% 1% 10% 0% 1% 10% 0% 1% 10%

Panel A: 100 observations in each simulation; 5000 simulations
(1) Percent OLS error 0.0275 0.0275 0.0275 0.2097 0.2097 0.2097 1.0917 1.0917 1.0917
(2) Percent [][]RTPLS error

(a) BD-RTPLS∗2 0.0147 0.0220 0.0276 0.0906 0.0963 0.1621 0.6595 0.6605 0.6830
(b) UD-RTPLS3 0.0025 0.0391 0.0567 0.0226 0.0406 0.2249 0.1272 0.1297 0.1913
(c) LR-RTPLS4 0.0025 0.0392 0.0571 0.0240 0.0429 0.2369 0.1621 0.1649 0.2332
(d) 4D-RTPLS5 0.0025 0.0392 0.0569 0.0233 0.0418 0.2309 0.1445 0.1471 0.2121
(e) BP-RTPLS6 0.0025 0.0392 0.0571 0.0233 0.0418 0.2369 0.1272 0.1297 0.1913

(3) OLS/[][]RTPLS
(a) BD-RTPLS∗ 0.67 0.70 0.72 0.75 0.77 0.75 1.09 1.09 1.08
(b) UD-RTPLS 1.11 1.54 1.48 1.16 1.27 1.43 1.40 1.41 1.49
(c) LR-RTPLS 1.11 1.55 1.48 1.12 1.22 1.51 1.24 1.24 1.31
(d) 4D-RTPLS 1.11 1.55 1.48 1.17 1.29 1.49 1.30 1.31 1.40
(e) BP-RTPLS 1.11 1.55 1.48 1.17 1.29 1.51 1.40 1.41 1.49

Panel B: 500 observations in each simulation; 5000 simulations
(1) Percent OLS error 0.0275 0.0275 0.0275 0.2097 0.2097 0.2097 1.0944 1.0944 1.0944
(2) Percent [][]RTPLS error

(a) BD-RTPLS∗ 0.0120 0.0251 0.0274 0.0645 0.0868 0.1857 0.5044 0.5066 0.5921
(b) UD-RTPLS 0.0011 0.0837 0.0581 0.0115 0.0645 0.3639 0.0610 0.0725 0.2445
(c) LR-RTPLS 0.0011 0.0840 0.0589 0.0120 0.0695 0.3942 0.0852 0.0987 0.3037
(d) 4D-RTPLS 0.0011 0.0839 0.0585 0.0117 0.0670 0.3790 0.0730 0.0855 0.2740
(e) BP-RTPLS 0.0011 0.0840 0.0589 0.0117 0.0670 0.3942 0.0610 0.0725 0.2445

(3) OLS/[][]RTPLS error
(a) BD-RTPLS∗ 0.64 0.56 0.75 0.87 0.85 0.62 0.88 0.88 0.87
(b) UD-RTPLS 1.05 1.49 1.48 1.07 1.18 1.21 1.38 1.40 1.48
(c) LR-RTPLS 1.07 1.53 1.48 1.04 1.14 1.36 1.25 1.25 1.32
(d) 4D-RTPLS 1.07 1.52 1.48 1.11 1.38 1.29 1.24 1.25 1.41
(e) BP-RTPLS 1.07 1.53 1.48 1.11 1.38 1.36 1.38 1.40 1.48

1
Each row was calculated with the following three sets of explanatory variables for the final regression: {1/X, Y/X}, {1/X,
Y/X, Y}, and {1/X, Y/X, Y ,X}. Column 3 shows the results when 1/X, Y/X, Y , andX are used as the explanatory variables
in the final regression because the approach with the greatest OLS/[][]RTPLS error ratio always used those variables for
column 3. For all other columns, the approach with the greatest OLS/[][]RTPLS error ratio always used solely 1/X and Y/X
and the corresponding results are those reported here.
2BD-RTPLS∗: UD-RTPLS except a constant is used in the final regression. Unlike BD-RTPLS, BD-RTPLS∗ does not truncate
off the 3% of the observations corresponding to the smallest (largest) Xs when peeling down (up).
3UD-RTPLS: RTPLS where the data are solely projected up and down, not left and right.
4LR-RTPLS: RTPLS where the data are solely projected to the left and right, not up and down.
54D-RTPLS: RTPLS where the data are projected up, down, left, and right.
6BP-RTPLS: the results for the approach—UD-RTPLS, LR-RTPLS, or 4D-RTPLS—that produces the greatest OLS/[][]RTPLS
ratio.

observation. In this example, the mean OLS/[][]RTPLS ratio is 2.6 making OLS appear to
have 2.6 times as much error as [][]RTPLS, when (in this example) OLS and [][]RTPLS are
performing the same on average. Taking the natural log solves this problem. Ln(5) = 1.609
and Ln(1/5) = −1.609 and their average would be zero and the antilog of zero is 1, correctly
showing that OLS and [][]RTPLS are performing equally well in this example.
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In our tables, we present the mean of the absolute value of the error for OLS and for
[][]RTPLS so that the reader can understand the size of the error involved. However, our
primary focus is on the OLS/[][]RTPLS ratio because this ratio gives the greatest possible
emphasis on the accuracy of estimates for individual observations. It is important to realize
that dividing the mean absolute value of the error for OLS by the mean absolute value of the
error for [][]RTPLS will not duplicate the OLS/[][]RTPLS error ratio.

Table 1 shows that the mean of the absolute value of the error fromOLS is 2.4% to 2.5%
when q makes a 10% difference to the true slope (Panel A, line 1, columns 1–3); in contrast,
when q makes a 1000% difference to the true slope, the mean error from OLS is 71.4% (Panel
A, line 1, columns 7-8). In contrast, themean of the absolute value of the error from BD-RTPLS
is only 8.93% when q makes a 1000% difference and e = 10% (Panel A, line 2b, column 9).
Moving from 71.4% error to 8.9% error is a huge improvement.

Notice also that the mean of the absolute value of error for OLS does not noticeably
change with the amount of measurement and round-off error added, but the mean of
[][]RTPLS error does increase as measurement and round-off error increases (Table 1, lines
1 and 2). Furthermore, as the sample size increases from 100 observations (Panel A) to 500
observations (Panel B), the mean of the absolute value of OLS error does not noticeably fall;
however, sometimes the mean [][]RTPLS error falls and sometimes it rises as the sample size
increases from 100 to 500 observations. We have no convincing explanation for why the mean
[][]RTPLS error sometimes rises as the sample size increases.

OLS produces greater mean error than [][]RTPLS except for when q = 10% and e =
10% for both sample sizes (lines 1 and 2, column 3) and when q = 10%, e = 1%, and when
q = 100%, e = 10% when 500 observations are used (lines 1-2, columns 2 and 6, Panel B).
When we focus on the OLS/[][]RTPLS mean error ratio, [][]RTPLS outperforms OLS for
all cases (the OLS/[][]RTPLS ratio is greater than 1) except for when q only makes a 10%
difference and e = 10%. It makes sense that when q and e are the same size, then [][]RTPLS
is not able to use the relative vertical position of observations to capture the influence of q
(because this vertical position contains an equal amount of e contamination).

When 100 observations and the best projection direction is used (line 2e), the
OLS/[][]RTPLS ratio shows (ignoring the case where both q and e = 10%) that OLS produces
between 2.58 times to 18.92 times (258% to 1892%) more error than [][]RTPLS. When 500
observations and the best projection direction are used, (ignoring the case where both q and
e = 10%), OLS produces between 1.67 times to 39.79 times (167% to 3979%) more error than
[][]RTPLS.

Table 1 (line 3) reveals a very interesting pattern. The optimal projection direction is
left and right (LR-RTPLS) when q makes a 10% difference and e = 1%; is left, right, up, and
down (4D-RTPLS) when q makes a 100% difference and e = 0% or 1%; is again left and right
when q = 100% and e = 10%; and is always up and down (UD-RTPLS) when q makes a
1000% difference. This pattern is the same for 100 observations and 500 observations and is
the exact same pattern that is obtained by looking at the maximumOLS/[][]RTPLS ratios for
the standard deviation of the error (Table 2, line 3). Furthermore, this pattern reappears in
Tables 3 and 4 (Panel B)when a single set of data is extensively analyzed. This is a persistent
pattern.

As discussed in Section 2 of this paper, an increase in the importance of q should
stretch the data upwards, leading to the efficient observations being more concentrated at the
top of the frontier than they are along the sides of the frontier, which would cause a projection
upward and downward (UD-RTPLS) to be more accurate than a projection left or right—
concentrated efficient observationsmust havemore similar values for q than nonconcentrated
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Table 3: One set of data, Y = 5 +X + αXq + 0.4e.

Mean error Mean OLS/[][]RTPLS e

Row q% e% of Y OLS UD LR 4D UD LR 4D

Panel A (1/X, Y/X, Y , and X in final regression)

1 120% 15.89% 0.1893 0.1668 0.1797 0.1704 0.96 0.92 0.97

2 130% 15.35% 0.2003 0.1719 0.1828 0.1748 1.10 1.01 1.06

3 140% 14.84% 0.2108 0.1805 0.1871 0.1805 1.05 1.06 1.13

4 150% 14.37% 0.2209 0.1909 0.1976 0.1910 1.06 1.15 1.19

5 160% 13.92% 0.2307 0.1927 0.1964 0.1913 1.03 1.15 1.15

6 170% 13.50% 0.2401 0.1987 0.2016 0.1968 1.07 1.17 1.18

7 180% 13.11% 0.2492 0.2028 0.2034 0.1999 1.11 1.22 1.28

8 190% 12.74% 0.2580 0.2032 0.2086 0.2020 1.12 1.18 1.28

9 200% 12.39% 0.2666 0.2112 0.2155 0.2090 1.13 1.23 1.30

10 210% 12.06% 0.2748 0.2174 0.2195 0.2144 1.12 1.29 1.27

11 220% 11.74% 0.2829 0.2237 0.2230 0.2192 1.16 1.35 1.31

12 230% 11.44% 0.2906 0.2293 0.2289 0.2245 1.20 1.26 1.30

13 240% 11.16% 0.2982 0.2300 0.2258 0.2236 1.17 1.32 1.28

14 250% 10.89% 0.3056 0.2348 0.2289 0.2277 1.23 1.36 1.30

15 260% 10.63% 0.3127 0.2361 0.2319 0.2293 1.19 1.27 1.32

16 270% 10.38% 0.3197 0.2399 0.2311 0.2313 1.19 1.29 1.32

17 280% 10.15% 0.3265 0.2438 0.2331 0.2343 1.22 1.35 1.32

18 290% 9.93% 0.3331 0.2480 0.2371 0.2377 1.20 1.31 1.38

19 300% 9.71% 0.3396 0.2534 0.2430 0.2444 1.24 1.31 1.30

Panel B (1/X and Y/X in final regression)

20 270% 10.38% 0.3197 0.4286 0.3942 0.4113 0.65 0.84 0.73

21 280% 10.15% 0.3265 0.4061 0.3759 0.3909 0.74 1.01 0.84

22 290% 9.93% 0.3331 0.3913 0.3587 0.3741 0.81 1.16 0.99

23 300% 9.71% 0.3396 0.3740 0.3442 0.3577 0.93 1.32 1.18

24 320% 9.31% 0.3520 0.3651 0.3282 0.3447 0.97 1.49 1.29

25 340% 8.94% 0.3639 0.3539 0.3094 0.3284 1.04 1.83 1.40

26 360% 8.60% 0.3753 0.3133 0.2901 0.2989 1.58 2.82 2.04

27 380% 8.28% 0.3862 0.3030 0.2810 0.2862 1.70 2.58 2.48

28 390% 8.13% 0.3915 0.2907 0.2786 0.2775 1.92 2.46 2.97

29 400% 7.99% 0.3966 0.2945 0.2758 0.2744 1.85 2.49 2.77

30 420% 7.71% 0.4067 0.2812 0.2701 0.2654 2.02 2.53 2.99

31 440% 7.46% 0.4163 0.2613 0.2641 0.2586 2.87 2.66 3.06

32 450% 7.34% 0.4210 0.2556 0.2640 0.2564 3.44 2.51 2.84

33 460% 7.22% 0.4256 0.2518 0.2659 0.2547 3.32 2.43 2.78

34 480% 6.99% 0.4346 0.2476 0.2664 0.2496 3.39 2.44 3.05

35 500% 6.78% 0.4432 0.2404 0.2672 0.2496 3.13 2.16 2.71
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Table 4: One set of data, additional simulations.

Mean error Mean OLS/[][]RTPLS error

Row q% e% of Y OLS UD LR 4D UD LR 4D

Panel A (1/X, Y/X, Y , and X in final regression) e = 20% of X

1 40% 10.94% 0.0795 0.0892 0.0952 0.0918 0.80 0.74 0.77

2 50% 10.43% 0.0958 0.0940 0.1028 0.0977 1.12 0.85 0.92

3 60% 9.97% 0.1112 0.1002 0.1062 0.1019 1.01 0.95 1.04

4 70% 9.55% 0.1258 0.1073 0.1151 0.1093 1.20 1.07 1.19

5 80% 9.16% 0.1396 0.1155 0.1210 0.1164 1.14 1.12 1.21

6 90% 8.80% 0.1527 0.1248 0.1354 0.1279 1.16 1.20 1.21

7 100% 8.47% 0.1652 0.1339 0.1430 0.1369 1.25 1.25 1.23

8 110% 8.16% 0.1771 0.1411 0.1463 0.1417 1.28 1.25 1.44

9 120% 7.88% 0.1885 0.1501 0.1547 0.1500 1.35 1.25 1.42

Panel B (1/X and Y/X in final regression) e = 20% of X

10 100% 8.47% 0.1652 0.2901 0.2641 0.2762 0.69 0.97 0.82

11 110% 8.16% 0.1771 0.2732 0.2511 0.2613 0.88 1.17 1.02

12 120% 7.88% 0.1885 0.2632 0.2381 0.2495 0.98 1.56 1.17

13 130% 7.61% 0.1995 0.2490 0.2267 0.2357 1.18 1.78 1.49

14 140% 7.36% 0.2100 0.2318 0.2186 0.2230 1.46 1.95 1.88

15 150% 7.13% 0.2202 0.2196 0.2129 0.2130 2.00 2.06 2.15

16 160% 6.91% 0.2299 0.2124 0.2097 0.2071 2.08 1.96 2.25

17 170% 6.70% 0.2393 0.2089 0.2049 0.2025 2.26 2.09 2.34

18 180% 6.51% 0.2484 0.1979 0.2061 0.1995 2.51 2.02 2.19

19 190% 6.32% 0.2572 0.1948 0.2010 0.1946 3.00 2.09 2.38

20 200% 6.15% 0.2658 0.1890 0.1997 0.1910 2.89 2.09 2.63

21 2000% 1.02% 0.7407 0.0949 0.1844 0.1384 4.68 2.11 2.91

Panel C (1/X, Y/X, Y , and X in final regression); e = 10% of X

22 20% 6.02% 0.0428 0.0498 0.0522 0.0509 0.86 0.79 0.76

23 30% 5.71% 0.0616 0.0562 0.0598 0.0579 1.06 0.88 0.94

24 40% 5.44% 0.0791 0.0647 0.0678 0.0657 1.22 1.25 1.21

25 50% 5.19% 0.0955 0.0748 0.0796 0.0770 1.38 1.25 1.22

26 60% 4.96% 0.1109 0.0835 0.0874 0.0846 1.46 1.41 1.44

Panel D (1/X and Y/X in final regression); e = 10% of X

27 30% 5.71% 0.0616 0.1548 0.1541 0.1542 0.80 0.70 0.75

28 40% 5.44% 0.0791 0.1485 0.1478 0.1476 1.15 0.98 1.00

29 50% 5.19% 0.0955 0.1417 0.1441 0.1422 1.30 1.16 1.28

30 60% 4.96% 0.1109 0.1365 0.1417 0.1384 1.59 1.29 1.44

31 70% 4.75% 0.1254 0.1322 0.1409 0.1357 1.75 1.47 1.49

32 80% 4.56% 0.1392 0.1303 0.1439 0.1356 1.74 1.35 1.67

33 90% 4.38% 0.1523 0.1271 0.1438 0.1337 2.02 1.40 1.85

34 100% 4.21% 0.1648 0.1251 0.1491 0.1356 2.14 1.35 1.64
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efficient observations. The opposite happens when qmakes a relatively small percent change
in the true slope. In this case the dataset is flatter, causing the efficient observations to
be more concentrated on the left and right and less concentrated on the top and bottom.
When this happens (columns 1–3 of Tables 1 and 2), then LR-RTPLS is more accurate than
its alternatives. In between the extremes of LR-RTPLS and UD-RTPLS is 4D-RTPLS which
projects in all four directions and explains columns 4 and 5 of Tables 1 and 2. The presence of
measurement and round-off error (e) makes it harder for [][]RTPLS to correctly capture the
influence of the omitted variables. Error (e) also vertically shifts the frontier upwards. Thus,
when e gets larger, its influence is diminished by projecting left and right (LR-RTPLS). This
explains line 3c of column 6 of Tables 1 and 2 as it compares to line 3d, columns 4 and 5.

Table 2 (comparing line 2 of Panels A and B) also shows that as the sample size
increases from 100 observations to 500 observations, the standard deviation of [][]RTPLS
error fell when e is 0% (columns 1, 4, and 7) andwhen qmakes a 1000% difference and e = 1%
(column 8). In all other cases, increasing the sample size caused the standard deviation of
[][]RTPLS error to increase. In contrast, changing the sample size (or changing the amount
of measurement and round off error) did not noticeably change the standard deviation of
the error for OLS (Table 2, line 1). However, increasing the importance of q does increase the
standard deviation of the error for OLS. Furthermore OLS has a smaller standard deviation of
the error than [][]RTPLS when q = 10% and e = 1% or 10% and when q = 100% and e = 10%
for both sample sizes (Table 2, line 2, columns 2, 3, and 6). In all other cases, [][]RTPLS has a
smaller standard deviation of the error than OLS.When the ratio betweenOLS and [][]RTPLS
of the standard deviation of the error is found for each observation and then the mean is
found (using the log procedure described above), OLS has a greater standard deviation of
the error than [][]RTPLS for all cases; the OLS/[][]RTPLS ratio ranges from 1.07 to 1.55.

The patterns found in Tables 1 and 2 for the best projection direction are repeated in
Panel B of Tables 3 and 4. Tables 3–5 use the same set of 100 values for X, q, and ε. Leightner
and Inoue [5] generated the values for X, q, and ε as random numbers between 0 and 10 and
imposed no distributional assumptions (they also list the X and q data in their Table 1 and
the ε data in footnote 5 of Table 5). The dependent variable (Y ) for Table 3 (both panels) was
generated by plugging in the values for X, q, and ε into Y = 5 + X + αXq + 0.4ε where the
numerical value for the q% given in Table 3, column 2, is 1000 times α and 0.4ε represents
measurement and round-off error (e). Since both X and ε are series of numbers that range
from 0 to 10, multiplying ε by 0.4 makes e equal to 40% of X.12 The e% given in column 3 of
Tables 3 and 4 is “e as a percent of Y” and was calculated as the maximum value for e divided
by (the maximum value of Y minus the maximum value for e). Y for Table 4, Panels A and B,
was calculated as Y = 5 + X + αXq + 0.2ε. Thus for these two panels, e is 20% of X. Likewise
the Y of Table 4, Panels C and D, were calculated as Y = 5+X +αXq+0.1ε; thus e = 10% ofX.

Each successive row of a given panel in Tables 3 and 4 represents an increase in the
importance of q as shown in column 2. The mean error and the OLS/[][]RTPLS ratios in
Tables 3–5 were calculated in the same way as they were in Table 1, sans the taking of the
mean value of 5000 simulations. Just as was done for Table 1, all the combinations of UD-
RTPLS, LR-RTPLS, and 4D-RTPLS with three different sets of possible explanatory variables
for the final regression were considered: {1/X, Y/X}, {1/X, Y/X, Y}, and {1/X, Y/X, Y,X}.
For Table 3, Panel A, and for Table 4, Panels A and C, the best set of explanatory variables for
the final regression was always 1/X, Y/X, Y , and X (and only those results are presented).
Likewise, for Table 3, Panel B, and for Table 4, Panels B and D, the best set of explanatory
variables for the final regression was always 1/X and Y/X (and only those results are
presented). These patterns mirror the patterns found in Table 1 where 1/X, Y/X, Y , and X
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were the best explanatory variables in column 3 and 1/X and Y/X were the best explanatory
variables in all other columns. Notice that Panels B and D are extensions of Panels A and C,
respectively, with several rows of overlap presented (see the q% given in column 2).

In Table 3 (where e = 40% of X), LR-RTPLS, 4D-RTPLS, and BD-RTPLS produced the
largest OLS/[][]RTPLS ratio when q affected the true slope by 300% to 380%, 390% to 440%,
and more than 440%, respectively. This progression from LR-RTPLS to 4D-RTPLS to BD-
RTPLS as q increases in importance reflects the progression shown in Table 1. Furthermore,
it is reflected in Table 4, Panel B. In Table 4 (where e = 20% of X), LR-RTPLS, 4D-RTPLS,
and BD-RTPLS produced the largest OLS/[][]RTPLS ratio when q affected the true slope by
120% to 140%, 150% to 170%, and more than 170%, respectively. Thus a smaller amount of
e (Table 4, Panel B) leads to narrower ranges for LR-RTPLS and 4D-RTPLS at much smaller
values for the importance of q than did the case with a larger amount of e in Table 3, Panel B.
In Table 4, Panels C and D, e as a percent of X falls even more (to 10%) and the results show
no region (given our increasing the importance of q by 10% for each row), where LR-RTPLS
and 4D-RTPLS are best.

Finally, notice that the mean of the absolute value of OLS’s error always increases
as the importance of q increases (column 4 of Tables 3 and 4); in contrast the mean of the
absolute value of BP-RTPLS’s error always falls (columns 5–7) when estimates using just
1/X and Y/X are optimal (Panels B and D). In all the cases shown in Tables 3 and 4, if e is
less than 5% of Y , then UD-RTPLS using 1/X and Y/X in the final regression is the BP-RTPLS
method.

Table 5 replicates the results of Table 5 of Leightner and Inoue [5] for applying the
first generation of this technique (RTPLS) to different types of equations and compares
those results to BP-RTPLS. Column 1 gives the equation estimated. Column 2 gives the true
equation into which the data from Tables 1 and 5 of Leightner and Inoue [5] was inserted.
Table 5, column 3, presents the mean of the absolute value of the error for OLS (calculated
using (4.6), sans the taking of the mean of 5000 simulations). Column 5 gives the mean of
the absolute value of the error for BP-RTPLS, column 7 gives the OLS/BP-RTPLS ratios, and
column 8 tells what specific form BP-RTPLS took—UD, LR, 4D correspond to UD-RTPLS, LR-
RTPLS, and 4D-RTPLS, respectively; no + signs, one + sign, and two + signs after UD, LR, and
4D indicate {1/X, Y/X}, {1/X, Y/X, Y}, and {1/X, Y/X, Y,X} as the explanatory variables in
the final regression, respectively. “1D” in column 8 denotes RTPLS.

The number not in parenthesis in columns 4 and 6 duplicates the numbers given in
Table 5 of Leightner and Inoue [5] for the first generation of this technique (RTPLS) for the
mean of the absolute value of the error for RTPLS and for the OLS/RTPLS ratio. The numbers
in parenthesis in columns 4 and 6 show how RTPLS would have performed if a constant had
not been included in the final regression.13 A comparison of the numbers not in parenthesis
to those in parenthesis dramatically illustrates how important it is to not include a constant
in the final regression—not including a constant increased the OLS/RTPLS ratio for all but
two of the cases (lines 1d and 3b) and the average OLS/RTPLS ratio increased 3.82-fold.14

If ∂Y/∂Xmight be negative (Line 1, Table 5), then a preliminary OLS regression should
be run between X and Y . If this preliminary regression generates a positive dY/dX (as it did
for lines 1d, 1g, 1h, 1i, and 1j), then normal BP-RTPLS can be used (note: true ∂Y/∂X was
negative for 4, 43, 26, 20, and 16 percent of the observations in lines 1(d), 1(g), 1(h), 1(i),
and 1(j), resp.). However, the preliminary regression found a negative dY/dX for the cases
given in lines 1(a), 1(b), 1(c), 1(e), and 1(f). In these cases, all Yswere multiplied by negative
one and then a constant (equal to 101, which was sufficiently big to make all Ys positive)
was added to all Ys. The normal BP-RTPLS process was then conducted using the adjusted
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Ys, but the resulting ∂Y/∂Xs were remultiplied by minus one. Multiplying either Y or X by
negative one and then adding a constant to make them all positive is necessary because (2.7)
and (2.8) only work for positive relationships.

This entire paper deals with misspecification error in that the influence of omitted
variables is ignored when using OLS for all of this paper’s cases. However, Table 5, line 2(a)
takes misspecification error to even the relationship between Y and X: X should be squared
(column 2), but it is not (column 1). In this case BP-RTPLS produced 24 percent mean error
(column 5) and a third of the error of OLS (column 7). Line 3 shows the results of using
RTPLS when omitted variables affect an exponent. Line 4 of Table 5 demonstrates that the
relationship between the omitted variable and the known independent variable does not have
to be modeled for BP-RTPLS to work well; BP-RTPLS noticeably out performs OLS when the
interaction term is X1q (Line 4(a)), X2

1q (Line 4(b)), and X3
1q (Line 4(c)).

Line 5 of Table 5 shows how BP-RTPLS can be used when there is more than one
known independent variable, where only one of them interacts with omitted variables.
Leightner and Inoue [5] argue that OLS produces consistent estimates for the known
independent variables that do not interact with omitted variables. Therefore to apply BP-
RTPLS to the equation in Line 5 of Table 5, an OLS estimate can be made of Y = α0 + α1X1 +
α2X2. Y1 can then be calculated as Y − α2

∧X2. Finally RTPLS can be used normally to find the
relationship between Y1 andX1 (note: in Table 5, Line 5 the error fromOLS is from estimating
Y = α0 + α1X1 + α2X2). In all the cases shown in Table 5, BP-RTPLS noticeably out performs
OLS. Comparing column 7 to column 6 of Table 5 and line 3(a) to 3(b) of Table 1 clearly
shows that BP-RTPLS produces a major improvement over the first two generations of this
technique.

5. Example

When the government buys goods and services (G), it causes gross domestic product (GDP)
to increase by a multiple of the spending. The pathways linking G and GDP are numerous,
interacting, and complex. For example, the increased government spending will cause
producer and consumer incomes to rise, interest rates to rise, and put upward or downward
pressure on the exchange rate, affecting exports and imports which in turn affect GDP. Many
economists have spent their careers trying to model all the important interconnections in
order to better advise the government. To complement the efforts of these economists, BP-
RTPLS can be used to produce reduced form estimates of ∂GDP/∂Gwithout having to model
all the “omitted variables.”

Annual data for the USA between 1929 and 2010 were downloaded from the Bureau of
Economic AnalysisWebsite (http://www.bea.gov/). The data were in billions of 2005 dollars
and corrected for inflation using a chain-linked index method. The top line of Figure 3 shows
the results of using LR-RTPLS and the bottom line of using UD-RTPLS to estimate ∂GDP/∂G.
If 4D-RTPLS had been depicted, it would lie between the top and bottom lines. Although LR-
RTPLS and UD-RTPLS produced different estimates, the two lines are close to each other and
they are approximately parallel.

The UD-RTPLS (LR-RTPLS) ∂GDP/∂G estimate for 2010 of 6.01 (6.26) implies that a
one dollar increase in real government spending would cause real GDP to increase by 6.01
(6.26) dollars. The big dip down in ∂GDP/∂G coincides with WWII—the UD-RTPLS (LR-
RTPLS) estimate of ∂GDP/∂G in 1940 was 5.44 (5.67) and it fell to 1.65 (1.73) in 1945. It makes
sense that the government purchasing bullets, tanks, and submarines (many of which were
destroyed in WWII) would have a smaller multiplier effect than the government building
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Figure 3: d(Real GDP)/d(Real G) for the USA (Top line = LR-RTPLS; Bottom Line = UD-RTPLS).

roads and schools during nonwar times. The UD-RTPLS (LR-RTPLS) estimates climbed from
3.12 (3.26) in 1953 to 6.33 (6.60) in 2007. The crisis that started in the USA in 2008 caused the
government multiplier to fall by five percent. An OLS estimate of ∂GDP/∂G is 5.22 for all
years.
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6. Conclusion

This paper has developed and extensively tested a third generation of a technique that uses
the relative vertical position of observations to account for the influence of omitted variables
that interact with the included variables without having to make the strong assumptions of
proxies or instruments. The contributions of this paper include the following.

First, Leightner and Inoue [5] showed that RTPLS has less bias than OLS when there
are omitted variables that interact with the included variables. However, this paper shows
that both RTPLS and BD-RTPLS (the first two generations of this technique) still contained
some bias (see footnote 9) because it included a constant in the final regression. Section 3
of this paper shows that the third generation of this technique (BP-RTPLS) is not biased.
Second, this paper shows that when [][]RTPLS does not include a constant, it produced
OLS/[][]RTPLS ratios that were 586 percent higher on average than [][]RTPLS when it does
include a constant in Table 1 (ignoring column 3) and 382 percent higher in Table 5. Deleting
this constant constitutes a major improvement.

Second, this is the first paper to test how the direction of data projection and the
variables included in the final regression affect the results. Very strong and persistent patterns
were found that include (1) that 1/X, Y/X, Y , and X should be used as the explanatory
variables in the final regression when q has an extremely small effect on the true slope and
that only Y/X and 1/X should be used when q has a normal or relatively larger effect on
the true slope15, (2) as the importance of the omitted variable increases, and as the size
of measurement and round off error decreases, there is usually a range where LR-RTPLS
produces the best estimates followed by a range where 4D-RTPLS is best, followed by UD-
RTPLS being best. However, UD-RTPLS using just 1/X and Y/X in the final regression will
be (by far) the best procedure for the widest range of possible values for the importance of q,
for the size of e, and for the type of specification. We recommend that researchers wanting to
use BP-RTPLS use UD-RTPLS but test the robustness of their results by comparing them to
(at the very least) LR-RTPLS estimates and then focus their analysis on conclusions that can
be drawn from both the UD-RTPLS and LR-RTPLS estimates.
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Endnotes

1. If the true relationship is Y = α0 + α1X1 + α2X2 and if X2 is omitted from the analysis, but
X2 has no relationship withX1 and thus does not affect the true slope—dY/dX1—thenX2

acts as a source of additional random variation which (in large samples) does not change
the numerical value of the estimated slope (α1); however, it will affect the estimated level
of statistical significance. One indicator of the importance of “omitted variable bias” is
that a Google Scholar search conducted in September 2011 generated 276,000 hits for
that phrase. Those hits included [16–30]. These papers include applications ranging
from criminal arrest rates, school achievement, hospital costs, psychological distress,
housing values, employment, health care expenditures, the cost of equity capital, effects
of unemployment insurance, productivity, and financial aid for higher education.
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2. The estimate for ∂Y/∂X will be approximately α1+α2E(qm), where E(qm) is the expected,
or mean, value for qm.

3. Instrumental variables must also be ignorable, or not add any explanatory value inde-
pendent of their correlation with the omitted variable. Furthermore, they must be so
highly correlated with the omitted variable that they capture the entire effect of the
omitted variable on the dependent variable [1]. Other methods for addressing omitted
variable bias (e.g., see [20, 22, 28, 30]) also require questionable assumptions that are not
made by BP-RTPLS.

4. If, instead of adding 0.4qX in (1.1), we had subtracted 0.4qX, then the smallest qswould
be on the top and the largest qs on the bottom of Figure 1. Either way, the vertical position
of observations captures the influence of the omitted variable q.

5. We say “approximately” because how the data are projected to the frontier will affect the
resulting TPLS estimate. If the data are projected upwards, then the top of the frontier
is weighted heavier. If the data are projected to the left, then the bottom of the frontier
is weighted heavier. Notice that projecting to the upper frontier in Figure 1 eliminated
approximately 92 percent of the variation due to omitted variables (the qs was changed
from a range from 1 to 98 to a range from 92 to 98). The final regression eliminates any
remaining variation due to omitted variables.

6. Y is more likely than X to be correlated to n; thus we consider adding either Y or Y and
X, but not just X. Notice that (2.6) should be estimated without using a constant.

7. All of the existing RTPLS and BD-RTPLS literature truncated off any horizontal and
vertical regions of the frontier, truncated off 3% of the other side of the frontier, and used
a constant in the final regression. BP-RTPLS does not truncate off 3% of the other side of
the frontier nor does it add a constant to the final regression.

8. Think of a straight regression line that would pass through the observations on the
frontier. The slope of that regression line would be flatter than the slope through just
the 90 s and steeper than the slope going through all the 80 s in Figure 2. Also notice that
in this case the second iteration will return to producing a perfect slope estimate for the
remaining observations associated with a q of 80, after truncating off a small horizontal
region of the frontier.

9. If we plotted the true value of the slope versus the BP-RTPLS estimate of the slope, then
BP-RTPLS works perfectly if its estimates lie on the 45 degree line. The effect discussed
in this paragraph implies that if a constant was added to the final BP-RTPLS estimate
(which would be incorrect), then the BP-RTPLS line would cross the 45 degree line in the
middle of the data and the triangle formed by the 45 degree line and the BP-RTPLS line
below this crossing would be identical to the triangle formed above this crossing. This
is exactly what we find if we add a constant to the final BP-RTPLS estimate. However,
when a constant is not included, the two triangles being of equal size off set each other
and the BP-RTPLS estimates lie along the 45 degree line indicating the absence of bias.
This implies that adding a constant to the final regression, as was done in the first two
generations of this technique, resulted in biased estimates; however, this is not a problem
in the third generation.

10. This BD-RTPLS is not exactly the same as the second generation of this technique. It is
like the second generation in that it peels the data both down and up and that it used a
constant, 1/X and Y/X in the final regression. It is unlike the second generation because
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it did not truncate off the smallest 3% of the Xs in each iteration when peeling down and
the largest 3% of the Xs when peeling up. However, by making the difference between
BD-RTPLS in line 2a and UD-RTPLS in line 2b solely the presence of a constant in the
final regression for BD-RTPLS, we dramatically illustrate why a constant should not be
included in the final regression. To see this, compare line 3(a) and 3(b).

11. Leightner and Inoue [5] mistakenly substituted “Ln(|Eols
i |/|ERTPLS

i |)” for Eols
i in their

counterpart for (4.6). This resulted in the absolute value being taken twice, which should
not have been done. This affected their results the most when the size of measurement
error was 10%.

12. Thus this e is always positive. This always positive e can be thought of as the
combined effects of an omitted variable that shifts the relationship between Y and X
upwards (without changing its slope)with measurement and round-off error that would
sometimes increase and sometimes decrease Y . This was the easiest way to construct
error that can be calibrated to X.

13. The old RTPLS not only used a constant in the final regression, it also truncated off the
first 3% of the frontier which occurred on the side of the frontier opposite any potentially
horizontal or vertical region and it did not make estimates for the observations that
corresponded to the 3% of the observations with the smallest values for X. The numbers
given in parentheses in columns 4 and 6 of Table 5 do none of these things. However,
the numbers in parenthesis do use the best set of explanatory variables for the final
regression: {1/X, Y/X}, {1/X, Y/X, Y}, or {1/X, Y/X, Y,X} as indicated in column 8.

14. For approximately half the cases, BP-RTPLS estimates (column 7) were less than the
RTPLS estimates when a constant is not used (numbers in parentheses in column 6). This
implies that the TPLS estimates from peeling the data downward were more accurate
than the TPLS estimates from peeling the data upwards for this dataset.

15. Table 5 shows that this rule may not hold for other specifications. Muchmore work needs
to be done to determine the optimal set of explanatory variables for the final regression
under different specifications.
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