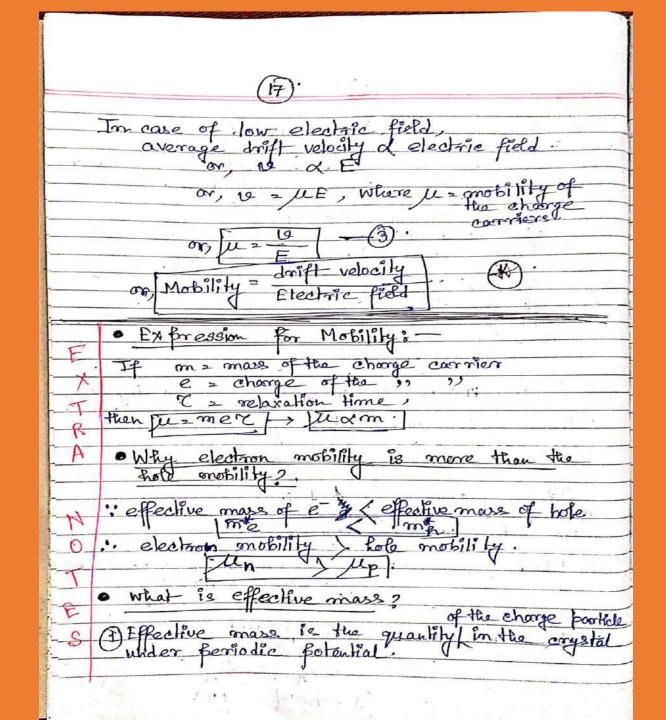
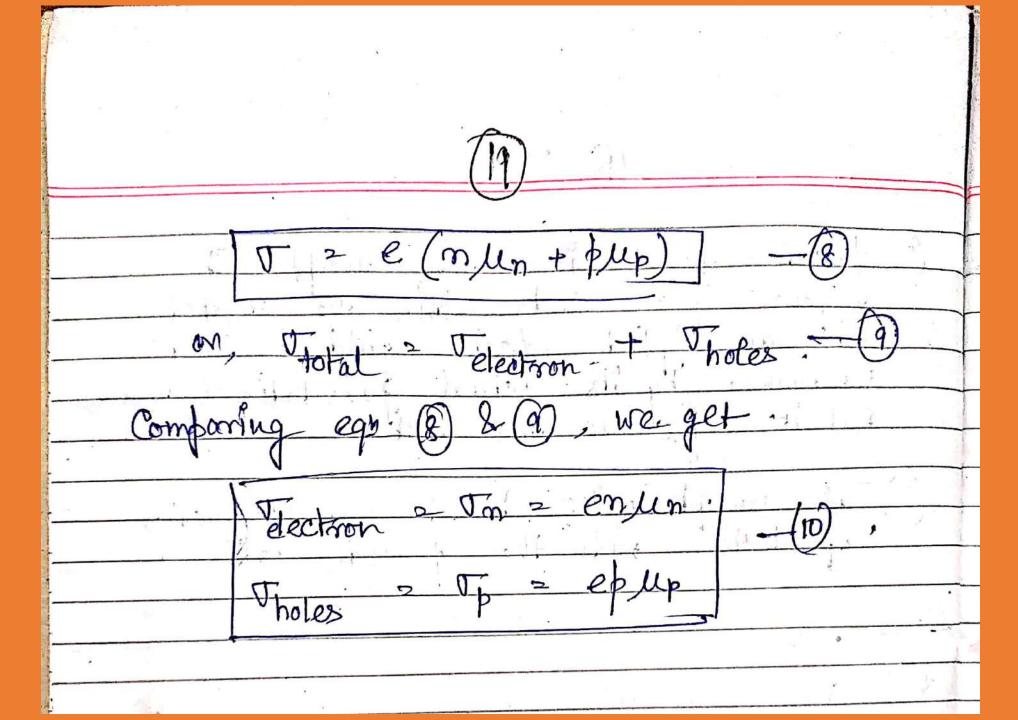


University of Calcutta
Semester 4
PHYSICS
paperPHS-A-CC-4-10-TH (OLD SYLLABUS)
CONDUCTIVITY AND MOBILITY


Dr. Koel Adhikary,
Department of Physics
Government Girls' General Degree
College

BASIC IDEA OF CONDUCTIVITYM MOBILITY AND DRIFT VELOCITY



EXPRESSION FOR CONDUCTIVITY

(§) ·
(2) Effective mass is a new concept. The response of an electron within the crystal under an applied electric field is not determined by its actual gravitational mass, but its effective mass.
(3) This concept orises due to the interaction of electron with the periodic Patrice.
From egn (3)
192 HE:
Lully the a
butting this in eqn (2), we get,
J= neuE - 4).
For electrons, Je = ne un F - 5.
For holes, In = peupE - 6.
, 11 /1/1
In case of semiconductor, both electrons and holes movement bute in current flow,
and Roles movement abute in grament flows.
Total drift current density
J = Je + Jh.
- neline + # telipe
Jo eF(n un + p up) (7)
Elasto 1 and habite
Electrical conductivity = current density electric field.
-, -, -, -, -, -, -, -, -, -, -, -, -, -
or, $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
= ef (mun+pup)
F F

Conductivity Equation

General Form

$$\sigma = \frac{1}{\rho} = n q \mu$$

```
\sigma = \text{conductivity} (ohm-m)<sup>-1</sup>

\rho = \text{resistivity} (ohm-m)

n = \text{carrier density} (# of carriers/m<sup>3</sup>)

q = \text{electric charge} 1.6x10<sup>-19</sup> (C)

\mu = \text{mobility} (m<sup>2</sup>/(V-s))
```

CONDUCTIVITY EQUATION CONSIDERING ELECTRONS AND HOLES

Conductivity Equation (Cont.)

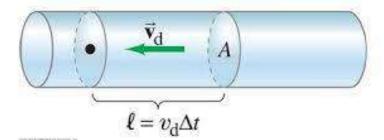
Insulators (n=p)

$$\sigma = nq\mu_e + pq\mu_h \rightarrow \sigma = n_i q(\mu_e + \mu_h)$$

 $\sigma = \text{conductivity}$ (ohm-m)⁻¹

 n_i = intrinsic carrier density (# of carriers/m³)

q = electric charge 1.6x10⁻¹⁹ (C)


 μ_e = electron mobility (m²/(V-s))

 μ_h = electron hole mobility (m²/(V-s))

^{*}There will not be an insulator example calculation due to extremely low conductivity.

SOME MORE IDEA ABOUT DRIFT VELOCITY

Drift Velocity Calculation

 n - Free electrons (of charge e) travel a displacement I, in a time Δt, through a cross-sectional area A, at a current density j, The drift velocity is:

$$\overrightarrow{v_D} = -\frac{\overrightarrow{j}}{ne} \text{ or } -\frac{I}{neA}$$

 Note: the (-) sign indicates the direction of (positive conventional) current, which is opposite to the direction of the velocity of the electrons

CONCEPT OF PERIODIC POTENTIAL

Caper 6 Band Theory of Solids

145

state splits into two distinct states when the two atoms are brought nearer. If now N atoms are brought close together, each energy state will brought close together, each energy state will split into N-energy states. If $N \to a$ large value, split into N-energy states the energy states is very the separation between the energy states is very small so as to develop a quasi-continuous band. Thus, each energy level splits into a band of thus, each energy level splits into a band of energy levels. The formation of band for 1s and 2s states, with reducing separations between the atoms is illustrated in Fig. 6.4.

• The width of a band is a function of (i) the strength of the interaction and (ii) the overlap between the neighbouring atoms.

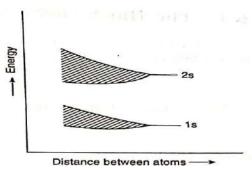


Fig. 6.4 Formation of bands for 1s and 2s states

6.3 Periodic potential in a crystal

The potential energy (P.E.) of an electron in the vicinity of an atomic nucleus of charge Ze is given by

 $V = -\frac{Ze^2}{4\pi\varepsilon_0 r} \tag{6.3.1}$

where r is the electron-nucleus separation and ε_0 the permittivity of free space.

The variation of V with r for an isolated atom is illustrated in Fig. 6.5. When a number of such nuclei are brought close together to form a crystal, the P.E. of an electron is the sum of the potential energies due to the individual nuclei. The potential energy as a function of distance for an infinite one-dimensional crystal would appear as depicted in Fig. 6.6 i.e, the variation of potential energy is a periodic function of the distance, with equi-spaced nuclei.

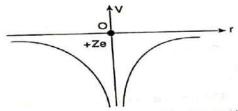


Fig. 6.5 Variation of potential energy with distance for an isolated atom

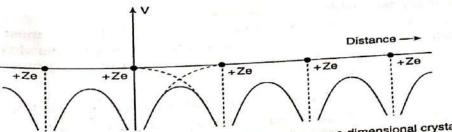


Fig. 6.6 Variation of potential energy with distance for a one-dimensional crystal