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WAVE EQUATION DERIVATION FROM MAXWELL'S EQUATION
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Electromagnetic Wave Equation

Recall that in a “simple” dielectric material, we derived the
wave equations:

V2E —ueE = 0 (1)
V2B — ueB 0 (2)

To derive these equations, we used Maxwell’'s equations with
the assumptions that the charge density p and current density J
were zero, and that the permeability p and permittivity € were
constants.

We found that the above equations had plane-wave solutions,
with phase velocity:

vzﬁ (3)

Maxwell’s equations imposed additional constraints on the
directions and relative amplitudes of the electric and magnetic
fields.
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Electromagnetic Wave Equation in Conductors

How are the wave equations (and their solutions) modified for
the case of electrically conducting media?

We shall restrict our analysis to the case of ohmic conductors,
which are defined by:

J=0cE (4)

where o is a constant, the conductivity of the material.

All we need to do is substitute from equation (4) into Maxwell’s
equations, then proceed as for the case of a dielectric...
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Plane Monochromatic Wave in a Conducting Material

In our “simple” conductor, Maxwell’'s equations take the form:

V-E =0 (5)
V-B =0 (6)
VxE = —B (7)
VxB = usE+uf (8)

where .J is the current density. Assuming an ohmic conductor,
we can write:

—

J=ocFE (9)
so equation (8) becomes:
VxB= usﬁ + uoE (10)

Taking the curl of equation (7) and making appropriate
substitutions as before, we arrive at the wave equation:

Vzﬁ—uoﬁ—u5§=0 (11)
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Plane Monochromatic Wave in a Conducting Material

The wave equation for the electric field in a conducting
material is (11):

V2E — uaf;'f - usﬁ =) (12)
Let us try a solution of the same form as before:

B(F 1) = ByedWt=k (13)

Remember that to find the physical field, we have to take the
real part. Substituting (13) into the wave equation (11) gives
the dispersion relation:

—k? — jwpo + wlue =0 (14)

Compared to the dispersion relation for a dielectric, the new
feature is the presence of an imaginary term in o. This means
the relationship between the wave vector k and the frequency w
is a little more complicated than before.
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Plane Monochromatic Wave in a Conducting Material

From the dispersion relation (14), we can expect the wave
vector k to have real and imaginary parts. Let us write:

k=da—jp (15)
for parallel real vectors & and 3.

Substituting (15) into the dispersion relation (14) and taking
real and imaginary parts, we find:

1 1 o2 4=
and:
B="7" (17)

Equations (16) and (17) give the real and imaginary parts of
the wave vector k in terms of the frequency w, and the material
properties u, € and o.

Advanced Electromagnetism 5 Part 3: EM Waves in Conductors




Plane Monochromatic Wave in a Conducting Material

Using equation (15) the solution (13) to the wave equation in a
conducting material can be written:

E(7,t) = Egel(Wt—a7)g=f7 (18)

The first exponential factor, ef(wt—&7) gives the usual
plane-wave variation of the field with position 7 and time ¢;
note that the conductivity of the material affects the
wavelength for a given frequency.

The second exponential factor, e BT gives an exponential decay
in the amplitude of the wave...
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Plane Monochromatic Wave in a Conducting Material
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Plane Monochromatic Wave in a Conducting Material

In a “simple"” non-conducting material there is no exponential
decay of the amplitude: electromagnetic waves can travel for
ever, without any loss of energy.

If the wave enters an electrical conductor, however, we can
expect very different behaviour. The electrical field in the wave
will cause currents to flow in the conductor. When a current
flows in a conductor (assuming it is not a superconductor)
there will be some energy changed into heat. This energy must
come from the wave. Therefore, we expect the wave gradually
to decay.
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Plane Monochromatic Wave in a Conducting Material

The varying electric field must have a magnetic field associated
with it. Presumably, the magnetic field has the same wave
vector and frequency as the electric field: this is the only way
we can satisfy Maxwell's equations for all positions and times.
Therefore, we try a solution of the form:

B(F,t) = ByelWt—FD (19)

Now we use Maxwell's equation (7):

VxE=-B (20)
which gives:

k x Eg = wBp (21)
or:

v

Bo = — X L (22)

w
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Plane Monochromatic Wave in a Conducting Material

The magnetic field in a wave in a conducting material is related
to the electric field by (22):

-

— k —
Bo = — X Eo (23)
w

As in a non-conducting material, the electric and magnetic
fields are perpendicular to the direction of motion (the wave is
a transverse wave) and are perpendicular to each other.

But there is a new feature, because the wave vector is complex.

In a non-conducting material, the electric and magnetic fields
were in phase: the expressions for the fields both had the same
phase angle ¢g. In complex notation, the complex phase angles
of the field amplitudes Egy and By were the same.

In a conductor, the complex phase of k gives a phase difference
between the electric and magnetic fields.
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Plane Monochromatic Wave in a Conducting Material

In a conducting material, there is a difference between the
phase angles of Eo and Eo, given by the phase angle ¢ of k.
This is:

B

tang¢ = . (24)

Advanced Electromagnetism Part 3: EM Waves in Conductors




Plane Monochromatic Wave in a Good Conductor

Let us consider the special case of a very good conductor. In
this case:

o> we (29)

From equation (16), we then have:

WO
2y [— 30
o[22 (30)
and from equation (17) we have:
B~ w_;zw ~a (31)

In the case of a very good conductor, the real and imaginary
parts of the wave vector k become equal. This means that the
decay of the wave is very fast in terms of the number of
wavelengths.

Note that the vectors @ and 3 have the same units as k, i.e.
meters—1.
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Phase Velocity in a Good Conductor

The electric field in the wave varies as (18):

B(F,t) = Byed@t—67) =B (32)

The phase velocity is the velocity of a point that stays in phase
with the wave. Consider a wave moving in the 4z direction:

E(F,t) = Eoej(wt_az)e'ﬂz (33)
For a point staying at a fixed phase, we must have:

wt — az(t) = constant (34)
So the phase velocity is given by:

dz w
= —=— 35
P dt Qo 128)
But note that in a good conductor, « is itself a function of w...
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Phase Velocity in a Good Conductor

For a poor conductor (o < we), we have:

QX w/IE (36)
so the phase velocity in a poor conductor is:

1
e (37)

o L\ JMHE
If © and e are constants (i.e. are independent of w) then the
phase velocity is independent of the frequency: there is no
dispersion.

However, in a good conductor (o > we), we have:

wpo wo
gy —— = — 38
o 5 e (38)
Then the phase velocity is given by:
1 2
vp ==~ = (39)
a Juey o

The phase velocity depends on the frequency: there is
dispersion!
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Phase Velocity and Group Velocity

The presence of dispersion means that the group velocity vy
(the velocity of a wave pulse) can differ from the phase velocity
vp (the velocity of a point staying at a fixed phase of the wave).

To understand what this means, consider the superposition of
two waves with equal amplitudes, both moving in the 4z
direction, and with similar wave numbers:

Ey = Egcos (wyt — [ko + Ak] z) + Egcos (w-t — [ko — Ak] 2)
(40)
Using a trigonometric identity:

cos A + cos B = 2 cos (A _; B) cos (A ; B) (41)

the electric field can be written:
Ey = 2FEq cos (wot — kgz) cos (Awt — Ak z) (42)

where:

wp = % (w+ -+ w_) Aw=wi4 —w_ (43)
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Phase Velocity and Group Velocity

We have written the total electric field in our superposed waves
as (42):

E; = 2Eqgcos (wot — kgz) cos (Awt — Ak z) (44)

Assuming that Ak < kg, the first trigonometric factor
represents a wave of (short) wavelength 27 /kg and phase
velocity:
vp = -9 (45)
ko
while the second trigonometric factor represents a modulation
of (long) wavelength 2x/Ak, which travels with velocity:

Aw
’Ug — A_k (46)

vg IS called the group velocity. Since Aw represents the change
in frequency that corresponds to a change Ak in wave number,
we can write:

— S 47
Vg s (47)
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Group Velocity and Energy Flow

The red wave moves with the phase velocity vp; the modulation
(represented by the blue line) moves with group velocity vy.

Since the energy in a wave depends on the local amplitude of
the wave, the energy in the wave is carried at the group
velocity vy.
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Phase Velocity and Group Velocity

If there is no dispersion, then the phase velocity is independent
of frequency:

vp = % = constant (48)
and the group velocity is equal to the phase velocity:
dw
-~ = 49
9T g TP (49)

In the absence of dispersion, a modulation resulting from the
superposition of two waves with similar frequencies will travel
at the same speed as the waves themselves.

However, if there is dispersion, then the group velocity can
differ from the phase velocity...
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Group Velocity of an EM Wave in a Good Conductor

The dispersion relation for an electromagnetic wave in a good
conductor is, from (38):

12
w= 542 (50)
HE T
where « is the real part of the wave vector. The group velocity

is then:

Y do

2
|
|

e

~ N (51)

Comparing with equation (39) for the phase velocity of an
electromagnetic wave in a good conductor, we find that:

In other words, the group velocity is approximately twice the
phase velocity.
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The Skin Depth of a Good Conductor

The real part, «, of the wave vector k£ in a conductor gives the
wavelength of the wave. 3 measures the distance that the wave
travels before its amplitude falls to 1/e of its original value. Let
us write the solution (18) for a wave travelling in the z
direction in a good conductor as:

E(7,t) = Eh(F)edWi—a7) (53)
where:
By (7) = Boe 7 (54)
The amplitude of the wave falls by a factor 1/e in a distance

1/8. We define the skin depth §:

§ = (55)

1
B
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The Skin Depth of a Good Conductor

From equation (31), we see that for a good conductor
(o > we), the skin depth is given by:

For example, consider silver, which has conductivity
o~ 6.30x10"Q Im~1 and permittivity
e~ eg~8.85x10712Fm~—1,

For radiation of frequency 1019 Hz, the “good conductor”
condition is satisfied, and the skin depth of the radiation is
approximately 0.6 micron (0.6 x 10~°% m).

Note that in vacuum, the wavelength of radiation of frequency
1010 Hz is about 3 cm; but in silver, the wavelength is:

2
A= =" ~ 275 ~ 4 micron (57)
«
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CLEAR YOUR CONCEPT ABOUT
SKIN EFFECT/ SKIN DEPTH



What is Skin Effect?

“» Skin effect is the tendency of an alternating electric current (AC) to
become distributed within a conductor such that the current
density is largest near the surface of the conductor, and decreases
with greater depths in the conductor.

Skin Depth(d)

Skin depth is a measure of the depth at which the current density
falls to 1/e of its value near the surface

Skin depth also describes the exponential decay of the electric and
magnetic fields, as well as the density of induced currents

Distribution of current flow in a cylindrical conductor, For alternating
current, most (63%) of the electric current flows between the surface
and the skin depth (&)




WHAT IS SKIN EFFECT?

CURRENT CONCENTRATING

CROSS SECTION OF
CONDUCTOR

NO CURRENT
FLOW INSIDE




Skin Effect Visualized

As SKIN DEPTH is inversely
proportional to the square root of
the FREQUENCY, it is clear from the
picture that

‘ as frequency increases skin depth

decreases’




SOLVED PROBLEMS -1

; ire carrying a current. Shoy by
2. Find the values of E and H on the surface of a wire car _ :
computing the Poynting vector, that it represents a flow of energy into the wire. (C.U. 1982)

i i d length [, as show
Ans. Let a constant current I flow through the wire of radius a an s n
in Fig.16.6. If V, is the potential difference across the l'eng.th I of the wire, the electric field op
the surface of the wire is directed along its length and is given by

Va
R
The magnetic field H at the surface is di-
rected along the tangent to the curved sur-
face, and from Ampere’s circuital law, it is
given by
Fig.16.6. Application of Poynting’s H = _I_
theorem to current flow in a wire g
The Poynting vector given by -
S=ExH,
is directed radially into the wire, as shown in Fig.16.6.

Since the fields are steady, the rate of change of electromagnetic energy is zero. Therefore
the conservation of energy expressed by Poynting’s theorem {Eq.(16:17)) gives — $s, §.ndSy=

ik hE;dV The rate of flow of energy into the wire through the closed surface of radius a and
ength [ is

- f §.#dSy = f EH dSy = EH(2ral) = V1, (i)
Sa So

on substituting the values of E and H. _
The volume integral [, £ JdV is calculated as follows -
Since J = o.E, we have

s Jr e 20V — & 2 o.ma?

on substituting for E. The resistance R of the wire is R = /(o «ma?). Hence

= |k v2
/VE-JdV=—£-=V41_ (ii)

From (i) and (ii) we find that Poynting's theorem is satisfied.
The phys@cal interpretation of this result is




SOLVED PROBLEMS -Z
4. Find from Poynting flow the mean value of the infensify of the nwgnetchéeééénlcz;;g

a distance of 100 em from & rudiating source of power 10 kW,
ing the radiating source as a point source, the total energy flow over 2

10° J/s. At the distance of 100 cm(= 1m), the

sphere with the source at the centre is 10kW = :
surface avea of the sphere is §p = 4712 = 4z m?2. The energy flow per unit area per second is
164/, = 104 /(4x) J. -

wave. E and H being perpendicular. Now, H = \/eg/ioE or,
since /up /€y = Intrinsic impedance of free Space = 377 £). Therefore

o1, H: =9
Vamx3rr | 0oA/m.

Therms. w2 ' of the magnetic intensity is H/\V2= 144A/m,




3. State and prove Poynting’s theorem. ‘ (C.U. 1982)

4. (a) A plane electromagnetic wave is incident normally on a metal of electrical conduc
tivity o. Show that the electromagnetic wave is damped inside the conductor and find the skir

8. (a) Write down Maxwell’s electromagnetic field equations and explain the physical
significance of each. (C.U. 1988, cf. Burd. U. 1995)

(b) Show how Maxwell’s equations in free space imply local conservation of charge (conti-
nuity equation) (C.U. 1994)

9. (a) Explain the concept of displacement current and show its importance.
| | | (cf. C.U. 1989, Burd. U. 1995)
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