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EINSTEIN’S THEORY OF SPECIFIC HEAT

. Einstein explained the specific heat of solid with the concept of
quantum mechanics.

* Asolid contains N number of atoms.

* N atoms represents 3N 1-D quantum HARMONIC OSCILLATORS.

* These oscillators have discrete energy values.

 The atoms vibrate independently of each other.

 But the atoms have the same angular frequency of vibration.

* The oscillators are distinguishable Located at different lattice
points.

* Although the atoms are QUANTUM OSCILLATORS, their energy
distribution is given by the MAXWELL-BOLTZMANN statistics.



EXPRESSION OF ENERGY OF ATOMS ACCORDING TO
QUANTUM MECHANICS

Planck (£, =nhe n=0,12,...tors (atoms) in a solid have quantized
energies

E =nhewo n=0,12,..

[later QM showed E, = (n + -",;)fuu s actually correct]

Einstein (1907): model a solid as a collection of 3N independent 1-D
oscillators, all with constant @, and use Planck’s equation for energy levels

https://youtu.be/St2rEAnUYAg



THE EXPRESSION OF AVERAGE ENERGY OF AN
OSCILLATOR ACCORDING TO EINSTEIN

According to Einstein, the probability f(v) that an oscillator have the
frequency v is given by, f(v) = 1/(e"™*T - 1). Hence the average energy for

an oscillator whose frequency of vibration is v 1s

Average energy  — h
per oscillator " &N

and not E = kT.



THEORY OF EINSTEIN THEORY OF SPECIFIC HEAT

The quantised energies of the oscillators are

En = (n - %) hv>~nhv, n=0.1.2....

R
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neglecting -;—hu, the temperature-independent ‘zero point energy’ whose Inclusign ;
Y

energy does not affect the specific heat.
The number of oscillators N, of each energy state is determined from the ...
hamsy,

function as
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N being the number of oscillators in the zero energy state.
And, the average vibrational energy of an oscillator is given by
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For one mole of solids, the total energy of the crystal is, taking into accoun: s
independent directions,

3N hv

hvikT _1° N = N4 = Avogadro number.

Emol = 3Ny& =

> dE hu 2 ehu,"kT :
Molar specific heat, ¢\ = (—) = 3Nk )
: s b Ml (kT ORI .
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Flg. 5.9 Einstoin specific heat curve

The Einstein specific heat curve is fairly close to the experimental curve except at
very low temperatures (Fig. 5.9). In the low temperature range, the Einstein's specific
heat approaches zero more rapidly then the observed values. But, at high temperatures,
it approaches the classical value. We shall now consider the following fwo limiting cases:
(i) high temperature range and (ii) low temperature range separately. Before we
do s0, we give an alternative form to (5.6.4). .

Let O = hv/k where ©p, having the unit of temperature, is the characteristic
temperature known as the Einstein temperature. Introducing ©f we get from (5.5.4)

@E 2 695/7’
_T> (eS=/T ~1)?

(i) For high temperatues: For temperatures such that kT 3> hv or T > O,
VT _ 1 =14 ho/kT+--—1= hv/kET

Cy = 3Nk ( (5.6.5)

<. From (5.6.3) &= Gkl "
E = 3NAkT =3RT
9E (5.6.6)
adiet — = 3R, 2
o Y = (8T)v

the same as the chassical result—the familiar Dulong-Petit ’s law. e .
(ii) For low temperatures: For temperatures such that hy 3> kT or Op 2> £,

We have ¢hv/AT 5, 1, Thus,

_ hv
€= Jhu/T
—hu/kT
; .. By = 3Na& = 3Nahve h"/
—hfkT,
and Cy = (g%)v = 3Npghv [e hv/ -sz]
h \* g-tufir 5.6.7)
= 3N4k (ﬁ) e~/ (

= 3Nk (9—(3—)26—95/7‘, in terms of ©f.
T

. Thus, for T « O, the heat capacity is proportional to e which is _—

Important than the term (©g/T). Thus, with decreasing temperature in the |y,

temperature range, Cy falls off almost exponentially. However, experiments show,

Cyv o T? for most of the solids, i.e., much more slowly.

(5.63)
-Og/T

While the Einstein’s model provides a much better explanation for the temperatug.
variation of specific heat than the classical theory, it cannot account for, as already
stated, the values of specific heat at very low temperatures. The discrepancy is due
the oversimplified assumption that the atomic oscillators vibrate independently at the
same frequency. In fact, the oscillators are coupled together and a number vibrational
frequencies, rather than a single one, is possible. This is accounted for in Debye’s mode]
which we shall now describe and discuss.

https://youtu.be/bmrt6T-R62s

https://youtu.be/HYgSSLSMPeM



COMPARISON STUDY BETWEEN DULONG PETIT LAW
AND EINSTEIN’S SPECIFIC HEAT OF SOLIDS

Dulong-Petit model (1819)

Atoms on lattice vibrate
iIndependently of each
other

Completely classical
Heat capacity
independent of
temperature (3Nkg)
Poor agreement with
experiment, except at
high temperatures

Einstein model (1907)

Atoms on lattice vibrate
independently of each
other

Quantum mechanical
(vibrations are quantised)
Agreement with
experiment good at very
high (~3Nkg) and very low
(~0) temperatures, but
not inbetween



SOLVED PROBLEM

3. 1f the Einstein temperature for a material is 157 K, find the
C,, for that material at 100 K in calorie per mole per K
formula. Also, calculate Einstein’s frequency.
Ans. Einstein’s formula is

dthe valyg of
usmg Einsteip,

x2 e

@ — 1

where x = ©5/T . Here Op = 157 K and T = 100K. Thercfore, x
157/100 = 1.57. Since R = 1.99 cal. per mole per K, we have

o o 3 X 199 X (157 o157

v @ 12 = 4.88 cal. mol~1. K~!
e’ — '

Enstein’s frequency is

C, =3R

v

kpOr 138 x 10-23 % 157

T 6.6 x 10— = 3.28 x 1012 Hz

.

y =

A ™l



» Example 6. Calculate the FEinstein's frequency for Cy for which the EBingier,
temperature iz 230 K.

Solution: Einstein’s temperature O is given by

hv E 1.38 x 10~
O = = v=—0 ' '
k hE= 66 =103 X0
= 4.81 x 1012 g4



