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A physical system in which some
value oscillates above and below a
mean value at one or more
characteristic frequencies. Such
systems often arise when a contrary
force results from displacement from
a force-neutral position, and gets
stronger in proportion to the amount
of displacement. For example, pulling
or pushing the end of a spring from its
rest position results in a force pushing
back toward the rest position. Letting
the spring go from a position of
tension results in harmonic motion of
the spring; the spring is now a
harmonic oscillator. Other examples
include a swinging pendulum, a
vibrating violin string, or an electronic
circuit that produces radio waves.




Coupled Oscillations occur when two
or more oscillating systems are
connected in such a manner as to
allow motion energy to be exchanged
between them. Coupled oscillators

occur In nature (e.g., the moon and
earth orbiting each other) or can be
found in man-made devices (such as
with the pacemaker).




The vibration of the crystal as a whole is considered
equivalent to the vibrational motion of a system of coupled
harmonic oscillator.

* The coupled harmonic oscillators can propagate a range of
frequencies rather than one.

* The crystals can propagate elastic waves of low
frequencies like sound wave to high frequencies.

 The number of vibrational modes per unit frequency range
is called the DENSITY OF STATES.



The possible number of modes of elastic standing waves of any kind with frequencieg

lying between v and v + dv is given by

g(v)dv = (47?/) v2dv

Vs

(5.7.1)

where V' is the volume of &, mole of the solid cube, and v is the wave speed.

In general, the elastic waves propagating in a solid are of

two types—longitudinal, of speed v and transverse, of speed
vt. Also, there are two perpendicul

ar directions of polarisation
for a given transverse wave.

. The total number of vibrational modes of frequencies
lying between v and v + dv is

g(W)dv = 47V (ls - %) vidy (5.7.2)
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Fig. 5.10 Frequency spectrum

® A curve between the density of states g(v) and v, as given in Fig. 5.10, shows t.hat
g(v) increases as v?. The function g(v) is also called the spectral distribution function.




The average energy £ of an oscillngor of frequency 1 at temperature T i
e d 2 T is
£ o= h
s @
R (5.7.3)
Associating harmonic oscillator of the game frequency with each vibrational mode
(he vibrational energy of the crystal s ’
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v mdu (5.7.4)

Here the upper limit of integration is some maz
frequency vp or Debye cul-off frequenc
of standing waves. Debye assumed th
total number of vibrational modes is

tmum frequency, called Debye
Y. There cannot thus be an infinite number
at if there are N number of atoms in a solid, the
limited to 3N. So, using (5.7.2)
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which can be used to determine the Debye fre- o
quency, vp. It is interesting to note the frequency
spectrum according to Debye and Einstein mod-
els, as are illustrated in Fig. 5.11.

From (5.7.4), using (5.7.5), we obtain
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Fig. 5.11 Frequency spectrum according to
Debye model and Einstein mode!

D 3 in terms of vp.
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Putting hw/kT = x and hvp/kT = xp, v = 2kT/h = dv = (KTdz)/h.
“. Equation (5.7.6) becomes,

, 3 30
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Defining, as in Einstein's theory, the Debye (characteristic) temperature

Op = hvp = Ip= %TD, we have from (5.7.7)
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¥hich doeg 04 depend explicitly on the volume.

oF T \3 [Oo/T ¢xpt
., Molar specific heat, Cy'= (ﬁ)v = ONLk (é;) /0 e

= 3R (%TD) Fp (519)

The function Fp is called the Debye funclion and is expressed as
T 4 rOp/T erm‘l
==l e e g
Fp=d (9D> /o (e*—1)3 (5.7.10)
Let us now consider the following two limiting cases.

(i) High temperature case: For T > ©p, z is small compared to unity for the
entire range of integration so that we have ¢* — 1 ~ z. The equation (5.7.8) reduces to

3 ,0p/T
E=9NkT(—T-) / 2% 22dx = ANET
©pn/ Jo
oF
= (22) =8NEw=sR
Cv (aT)v 3

in complete agreement with Dulong and Petit’s law. It means, in fact, that quantum
consideration has hardly any significance at high temperatures for when 7 » 6,

every mode of oscillation is completely excited and has an average energy & = kT, the
classical value.

(ii) Low temperature case: For T <« Op, zp = ©p/T — oo and the equation
(5.7.8) reduces to the form
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which shows that the vibrational energy is proportional to T4, analogous to Stefan’s la¥

of black radiation. This implies that both phonons end photons obey the same statistics
with the difference that while photons obey 74

%0
-law at all temperatures, phonons 40
only at low temperatures.
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and this is the famous expression k"mm :
g to this law, Cy — 0 as T — 0 (the

Thus, at very low te

mperatures, Cy oc T'3
as Debye’s T3 a R G

-law for specific heat. Accordin
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Flg. 5.12 Various spaecific hoat curves of a solid

polds for T < ©p/10). There is an ezcellent agreement between the experimental values
of Cy at various temperatures with those calculated from Debye’s model (Fig. 5.12)
for Al and Cu validating the Dcbye-approximation at sufficiently low temperatures.
Fig. 5.12 gives a typical Debye plot along with measured data, Einstein's plot and the
classical value.

(iii) Intermediate temperature case: Debye’s model agrees remarkably well
at the two extremes of temperatures, i.c., in the range T’ < ©p/50 and T' > 0.20p.
But at temperatures intermediate between the above two. where a gradual transition
of T3-law to the classical one occurs, the agreement is not satisfactory.

This is because a solid cannot be treated as a continuum at frequencies near vp
as assumed by Debye. In fact, this frequency corresponds to a wavelength of atomic
spacing. The frequency spectrum of Debye model is different from that expected from

Number of states per unit

frequency range g(v)

Fig. 5.13 Frequency spectrum (a) according to Debye modsl,
(b) behaviour as expected from a roal crystal

a real erystal, as illustrated in Fig. 5.13. But, interestingly, the area under the two
Curves are equal. To improve Debye’s model, the correct dispersion relation and the
torresponding density of states are to be used.

We conclude the section by summarising the different limitations of Debye’s model.




Most 1mportant, the theory put a cut-off to the frequency distribution at
highest frequency of vibration corresponds to the nearest inter-atomic
distance. This indicates that modes having wavelength smaller than inter-

atomic distance is not possible, which is true.

"" ||' v

)
{17 max
/

/,.

&

v -//
7t

Frequency Frequency
Einstein Model Debye Mccel |

J

c
8
2

=
a8

ey
=
2
e

o

Q

[~

@

=

o

o

A
u- 1

For most of the metals the Debye temperature lies in the range 300 to 400K,
Since the Debye temperature is directly proportional to the maximum lattice
frequency, a high value of the frequency implies that we are dealing with a
lattice which has very strong inter-atomic forces and light atoms. e.g., for

diamond
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The assumptions of Debye theory are:  sabocopes et e oy oo Bl et
* the crystal is harmonic '

+ elastic waves in the crystal are non-dispersive

* the crystal is isotropic (no directional dependence)

* there is a high-frequency cut-off determined by the number of

degrees of freedom




F gxample 8. For aluminium, the Debye temperature © p is 400 K. Calculate its specific
heat ot constant volume at a temperature 40 K. Assume R = 2 calorie.

Since 40K is quite low a temperature, we may apply Debye’s T 3_law.
Cv = T7.9 x 3R(T/Op)?
= 77.9 x 3 x 2 x (40/400)*
= 0.467 cal.

golution :

» Example 9. Estimate th3c Debye temperature of gold if its atomic weight is 197, the
density is 1.9 X 10 kg/m® and the velocity of sound in it is 2100 m/s.

Solution: At. wt. of Au = 197, density p =1.9 X 104 kg/m?, vs = 2100m/s, p =7

.. Volume, V = = — 103.68 x 10~ *m®

The Debye temperature, ©p =

6.62x107% x 2100 [ 9x6.02x 10% s
1,38 % 10~% 127 x 103.68 x 10—4

240K




