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A line integral (sometimes called a path integral) is the
integral of some function along a curve. One can integrate
a scalar-valued function along a curve, obtaining for
example, the mass of a wire from its density. One can also

integrate a certain type of vector-valued functions along a
curve. These vector-valued functions are the ones where
the input and output dimensions are the same, and we
usually represent them as vector fields.




LINE INTEGRALS. Let r(u) = x(u)i + y(u)j + z(u)k, where r(u) is the position vector of (x,y,2),
define a curve C joining points P, and P,, where u=u, and u=u, respectively.

We assume that C is composed of a finite number of curves for each of which r(uz) has a contin-
uous derivative. Let A(x,y,z) = A4i + A,j + Ask be a vector function of position defined and con-
tinuous along C. Then the integral of the tangential component of A along C from P; to P,, written as

Py
f A-dr = fA-dr = f/h dx + Ap,dy + Agd:z
P, c

c

is an example of a line integral. If A is the force F on a particle moving along C, this line integral
represents the work done by the force. If C is a closed curve (which we shall suppose is a simple

closed curve, i.e. a curve which does not intersect itself anywhere) the integral around C is often
denoted by

Aydx + Ap,dy + Agdz




https://youtu.be/t3cJYNdQLYg
https://youtu.be/dnGDm2ZynvYY

https://youtu.be/AFF8FXxt50s



SURFACE INTEGRALS. Let S be a two-sided surface, such as shown in the figure below. Let one

side of S be considered arbitrarily as the positive side (if S is a closed
surface this is taken as the outer side). A unit normal n to any point of the positive side of § is
called a positive or outward drawn unit normal.

Associate with the differential of surface
area dS a vector dS whose magnitude is dS and
whose direction is that of n, Then dS =ndS.
The integral

{fA-dS = [fA.ndS

is an example of a surface integral called the
flux of A over S. Other surface integrals are

gw& [(iands, ﬂAde

where ¢ is a scalar function. Such integrals can
be defined in terms of limits of sums as in ele-
mentary calculus (see Problem 17).

The notation # is sometimes used to indicate integration over the closed surface S. Where

S
no confusion can arise the notation f may also be used.
S

To evaluate surface integrals, it is convenient to express them as double integrals taken over
the projected area of the surface S on one of the coordinate planes. This is possible if any line per-
pendicular to the coordinate plane chosen meets the surface in no more than one point. However, this

does not pose any real problem since we can generally subdivide S into surfaces which do satisfy
this restriction.




The line integral of a vector field F' could be interpreted as
the work done by the force field F on a particle moving
along the path. The surface integral of a vector field F
actually has a simpler explanation. If the vector field F
represents the flow of a fluid, then the surface integral of
F will represent the amount of fluid flowing through the

surface (per unit time).

The amount of the fluid flowing through the surface per
unit time is also called the flux of fluid through the
surface. For this reason, we often call the surface integral
of a vector field a flux integral.




https://youtu.be/9k97m8oWnaY

https://youtu.be/GmI1HT4y3 c

https://youtu.be/7sQCcGIK2bY



VOLUME INTEGRALS. Consider a closed surface in space enclosing a volume V., Then

f[frer s [[foo

are examples of volume integrals or space integrals as they are sometimes called. For evaluation of
such integrals, see the Solved Problems,




Surface & Volume Integral

Diagram

aths description

Result

Information
required

Integral imits depends on surface

A measure of the total flux

from vector field passing
through a given surface

1. Vector field
expression A
2. Surface expression

‘ », dy

A measure of the total effect of
a scalar function i.e.
temperature, inside a given
volume

1. Scalar Function p,
2. Volume expression

Integral limits depends on volume




The Gauss Theorem

This theorem is related to conservation laws in physics. It states
that the total sources and sinks of a vectorial quantity, or the
integral volume of its divergence, is equal to the net flux of this
vectorial quantity across the volume boundary.

B3xV-A=¢ A-dS
AV AS




l / A-7dS = /v / f (div A)dV.

This is Gauss’s divergence theorem, i.e., the volume integral of the divergence of a vector 4
in a vector field, taken through a given volume, is equal to the surface integral of the normal
component of A over the surface which encloses the volume.

https://youtu.be/vZGvgru4TwE



STOKE’STHEOREM

The circulation of a vector field A around
a closed path L is equal to the surface
integral of the curl of A over the open
surface S bounded by L that A and curl

of A are continuous on S.

fAedl=[(VxA)edsS




f;{.dz;f/ curl A- dS.
L
S

This is Stokes’s theorem. It can be expressed in the following Way:

. T d path is equal t(
The line integral of th : the vector A round any closed p .
gral of the tangential componert of % face having the path as its bounda

the normal surface integral of the vector curl A over the sur

https://youtu.be/QS-zUSu-nxA



https://youtu.be/3VdYFOTBasA

https://youtu.be/L6eCZRisUxg



Solved
Problem



2
1. If R(w) = (u~ud)i + 2°j — 3k, find (a) fR(u) du and (b)f R(u) du .
1

(a) fR(u)du

f [w—u)i + 2u®§ — 3k}du

if(u-uQ)du + jqusdu + kf-—3du

= (B aey + J(K+ep) + K(=3utcg)
2 3 2
2 3 4
= ("7_%-)1 + "-é—j — 3uk + ecqi + c2j * ca3k
w _u ™
= (-é'——s-)l + "5‘] - 3uk + ¢

where ¢ is the constant vector cyi + ¢co] + cgk.

f2 u? u’ u* + |2
(6) From (a), ; R(u)du = (--2-—-§)i + -'Z—j - 3uk c i
. -+ Ly Py willy =
(-2 +Zi-3@k+e]l = [(5-1+51-3Dk+
= =21+ By -

Another Method.

2 2 2 2
J; R(u) du iJ; (u—-uQ)du + jj; wldy + kJ; - 3 du

2
TE P L A [

ut, [ . 5 15
o e A A R & B




LI A = (3x°+6y)i — 14yzj + 20xz°k, evaluate f A-dr from (0,0,0) to (1,1,1) alongthe follow-
ing paths C: {17
2 (@) x=¢, y=¢2, z=2°.
A (b) the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).

3. Evaluate A X }—-2" dt . () the straight line joining (0,0,0) and (1,1,1).
¥ f Adr = f{(sz?myn— 14yz § +20x22k]) «(dxi + dyj + dz k)
i) (]

2
Laxily - Axih 1A, 4A - [t e i
t

dt dt de dt

(a) If z=t, y'l’. 2219, points (0,0,0) and (1,1,1) correspond to ¢t=0 and ¢=1 respectively. Then

2 . = - 2 2 2, 3 2 3,2 3
d°A d dA dA £A ar = f @C+83)dt — 14¢%) () d(®) + 200)(°Y d()
xnt ’ f X —— d‘ - f — W — d - X — two
egrating A a2 5 (A 7 ) dt A ;

1

d f o de — 28 dt + 60 dt

=0

1 1
= f(gx"—zm°+sm“)a S A T T |0 =5

=0

Arother Method.
Along €, A =91 — 14°1 + 2007k and r=xi+yj+zk=ti+°f +F°k and dr=(i+2t+3k)de.

1
Then fA-d: = f(9:21—1051‘20:’l)-(1+2:]¢3¢’k)dl
(4 v
=0
%
= f (9 — 28 + 60%ydt = 5
0

(b) Along the straight line from (0,0,0) to (1,0,0) y=0, z=0,dy=0, dz=0 while x varies from 0 to 1. Then
the integral over this part of the path is

1

1 1
(3% +6(0)) dx — 14(0)(0)(0) + 20x(0)° (0) = f 3%dx = &° ]o =1
x=0 x=0

Along the straight line from (1,0,0) to (1,1,0) x=1, z=0,dx=0,dz=0 while y varles from 0 to 1.
Then the integral over this part of the path is o

1
f (3(1°+67)0 — 14y(0)dy + 20(1)(0° 0 = 0
y=0

VECTOR INTEGRATION

Along the straight line from (1,1,0) to (1,1,1) x=1,y=1,dx=0,dy=0 while z varies from 0 to 1.
‘Then the integral over this part of the path is
(3(1°+6(1)) 0 — 14(1) 2(0) + 20(1) z° dz
230
Adding, f Ade = 140+ 2
(4

(¢) The straight line joining (0,0,0) and (1,1,1) is given in parametric form by x=¢, y=¢t, z=¢t. Then

1
f A-dr f (346 dr — 14()(0) de + 20()(0)° dt
c
#0

1 1
f 3%+t —147+20" ) dr = f (6t =117 +20%) de = 133
t=0 =0




7. Find the total work done in moving a particle in a force field given by F = 3xyi — 5zj + 10xk
along the curve x =¢2+1, y = 2%, z=¢® from t=1 to t=2.

Total work = fF-dr =
(4]

f (3xyi— 5z +10xKk)-(dxi +dyj +dzk)
c

f3xydx — 5zdy + 10xdz
c
2

32 +1)(26%) d(E2+ 1) 5%y d(2?) + 102 +1) d(°)

(12¢5 + 106* + 1222 +306%)de = 303

. (@) I F is a conservative field, prove that curl F=Vx F =g (i.e. F is irrotational).

(b) Conversely, if VxF =0 (i.e. F is irrotational), prove that F is conservative.

(a) If F is a conservative field, then by Problem 10, F=V¢>.
Thus curlF = Vx Ve = 0 (see Problem 27(a), Chapter 4).
i k

) 1t VxF=0, then ai = 0 and thus
z

K KR &

Ok _ O OF, _ O 3F, 3R
% 9z " 9P  °ox ' Oox oy
We must prove that F= Vb follows as a consequence of this.

The work done in moving a particle from (xs,yi. 21) to (x,y,2) in the force field F is

VECTOR INTEGRATION

f Fixy,z)dx + Fyzy,z)dy + Fy(xy.z)d:
¢

where C 1s a path joining (xy,y,,z;) and (x,y,z). Let us choose as a particular path the straight [Ine

segments from (x4, ¥y, z3) to (x,71,21) 0 (%,y,z1) to (x,y,z) and call ¢(x,y,z) the work done along this
particular path. Then

x ¥ z
G (xy,2) = f Fi(x,yn2)dx + f Fa(x,y,z1) dy + f Falx,y,2) dz
*1 ” *

1
It follows that

ap

T - Rean

% Foex,y,24) + fL A (z)y,2) d2
37 73 V)

z B
Bx.y,zy) + =2 (xy.2) dz
2, 2

Folz,y,20) + Flxy Fo(x,y.21) + Balxy.2) — Fa(x.y.2z0) = Fxy,z)

1

Y OF, 7 R
Fix,yyz9) + j; -;f(x.y.zndy + -£; gf(x.y.z)dz

Y OF ? OF,
Fixoyy,za) + d—’(x.y.mdy + =3 (x,y,2) dz
. dy : O
1 1

Y z
Fix,yy,20) + Fxtx.y.zol 3 F1(1-1.1)|
N %

Fitx,r.29) + Filzoy,z0) — Flxoynz) + Fays) - Fax,y,z) = Alxy.z)

Then = Fi+Fj+ Fak = %‘pi+%’;+%‘f’u = Vo.

Thus a necessary and sufficient condition that a field F be conservative is that curlF = Vxr-o.




21. Evaluate f ¢n dS where ¢ = %xyz and S is the surface of Problem 20.
S

We have f dndS = ffcb Gxiae.
In-3]
S

. xityl) l
Using n = 3 , N-j = as in Problem 20, this last integral becomes

5 '}
ff%xz(xi+yl)dxdz %f f (x°zi +x2V16~x°§) dx dz

R z=0 x=0

B
_g_ f (%ézi+%zj)dz = 100i + 100j

z=0




28. A fluid of density p(x,y,z,t) moves with velocity v(x,y,z,1). If there are no sources or sinks,
prove that

3,0
v. —
J + 3z =0 where J = pv

Consider an arbitrary surface enclosing a volume V of the fluid. At any time the mass of fluid within

i

The time rate of increase of this mass is
¥ 2 fffew - IS F
) = e dav = =— dV
) Py & %
14 4
The mass of fluid per unit time leaving V is

ff v

(see Problem 15) and the time rate of increase in mass is therefore

Vis

126 DIVERGENCE THEOREM, STOKES’ THEOREM, RELATED INTEGRAL THEOREMS

—ffpv-nds = —ff V. (o) dv
5 V

by the divergence theorem. Then

fff %4 - -fffv-mv)d"
-]
7 y
fff(v-(pv) Y
: o

Since V is arbitrary, the integrand, assumed continuous, must be identically zero, by reasoning simi-
lar to that used in Problem 12. Then

V3 + .g.g = 0 where J=pv
t

The equation is called the continuity cguation. If 0 is a constant, the fluid is incompressible and V. v =
0, i.e. v is solenoidal.

The continuity equation also arises in electromagnetic theory, where 0 is the ckarge density and
J = pv 1is the current density.




32. Verify Stokes’ theorem for A = (2x—y)i —y22j —y2zk, where S is the upper half surface of
the sphere x? +y? +22 = 1 and C is its boundary.

The boundary C of S is a circle in the xy plane of radius one and center at the origin. Let x = cost,
y=sin¢, z=0, 0 < ¢t < 277 be parametric equations of C. Then

f A-dr = f (2x —y)dx — y22dy — y°z dz
(4 (4

2m
f (2 cost — sint) (—sint)dt = 7
0

j k
i) o)

d o

—~yz?2 —y?z

Then ff(VXA)ﬂl ds = ffk-n dS = ffdx dy
S S R

since n-k dS =dxdy and R is the projection of S on the xy plane. This last integral equals

[ 1-x2 I pVi1=x? !
f f dy dx = 4ff dydx = 4f 1—-22dx = 71
0 0 (¢}

x==| y=- /I_xQ

and Stokes’ theorem is verified.




Assignments

wEna g

n, 0) and

Oiﬂl: (0' 1099] X

(d) Find the line int it
egral of the vector I al ] 1 th
(23, 4) — P = 2% 4 % 4 (22 - ,,)[f.'_ g e e g 'fcpu. Hons:)
(C.U. (Hons:) 2900)

30. (a) Prove the identity ¥ x (¥ x A) = 9(9. A) - ¥2A.
h \(b) State Stokes' theorem., Using this theorem prove that

}4' ¢di-‘=// d5 x I,
< S .
b losed curve.
s 2000]

where ¢ is a scalar function of 7, S is an open surface bound
(C.U. (Hons.) 1993,
scalar

Answer of (b) We consider ' = @, where & is a constant vector and ¢ is differentiable

point function.

Then
/c(a‘ﬁ)'df' = // curl(@g)- 7dS (using Stokes’ theorem)
S

= 2 s . = F¢ x &)-ndS
/f(qbcurla @ x grad ¢)- AdS _{/( el

S
= —!/a-(ﬁ¢xﬁ)ds=oa-£/ (Vo x 7)dS

or &'-/cdadr": a{/ (7 x $¢)ds

or }{: ¢dr = f / d5 x ¥¢ (since @ is arbitrary)

s
[C.U. (Hons.) 1993)

31. Prove the identity (4-V)A = 1¥A? - Ax [V x A).
' [Ans. See worked out examples.)

32. Verify divergence theorem for a vector A = iZ + j¥ + k& = £, where i, ], k are the unit Vvectors
along X,Y, Z — the region of integration being a sphere of radius a with centre at the origin.
[C.U. (Hons.) 1980]

' "33. Show that each of the three equations
F=V¢, VxF=0, j(ﬁ-dr*:(),

implies the other two.

34. Prove that when 5B is solenoidal, a vector A exists such that B = ¥ x A.
from (0, 0)

35. If F = 3zyi— y?}, evaluate / F. d7 where C is the curve in the z —y plane, y = 222,
c
[Ans. —%.

to (1,2).



