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6.2 Some basic concepts '
§.2.1 Thermodynamic system

A thermodynamic system is a certain portion of the universe seiected tor the purpose
of investigation and is thus distinct, being set apart from everything else, and is essentially
macroscopic. The system may be a gas such as air, a vapour such as steam, a vapour in contact
with its liquid such as liquid ammonia and amonia vapour, a mixture such as air and gasoline
vapour etc. In addition to these systems relevant to engineering in particular, there may be
such thermodynamic systems as a stretched wire, electric capacitors, thermocouples, magnetic

materials, surface films and electric cells which are of more relevance in physics. Plainly, a
thermodynamic system is perceptible by our senses.

A system may be simple or complex. It may also be homogeneous or heterogeneous where
each component can exist in different phases. A gas enclosed in a cylinder fitted with a friction-
less gas-tight piston is a simple homogeneous system, but a phenol-water mixture is an example
of a complez heterogeneous system. Whatever be the system, it is always finite.

6.22 Surroundings and boundary

By surroundings of a system is meant everything outside it that can influence its behaviour.
The boundary of a system is the envelope that encloses the system and thereby separates it from
Ws surroundings. This is illustrated in Fig.6.1. The importance of
the boundary lies in visualising the system distinctly and it may be 80undary
teal or imaginary.
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The boundary of a system may or may not allow it to inter-
act with its surroundings. The boundary that does not allow any
tzchange of matter and energy between the system and its sur-
toundings is called an isolating boundary. A system bounded by an
1%olating boundary is termed an isolated system and is not of much
‘mpo{tance thermodynamically. A system with a boundary that
Permils ezchange of matter between the system and the surround-
;"S? 18 called an open system. The system, however, is said to be
": 9sed system if its boundary allows ezchange of energy, but pre-
nts ezchange of matter between the system and the surroundings.
oti‘:“d system, however, is not an isolated system. The exchange Fig.6.1 Thermodynamic
mhe:"&hv between the system and the surroundings may take place system and boundary
% inte"m'a"y or by doing work on the system. The surface or boundary that prevents ther-
h°weve.tru°n With surroundings is called adiabatic, and the system is thermally isolated. If
: . eat exchange can occur through the boundary, it is said to be diathe R

' > : 4 rmic,
a diathermie boundary will necessarily be in thermal contact with the surrOundi‘:gssystem

-----
.....
I

NSNS SRTUSSSSSAOANN

\\\.\\\\\ ARRRRRRRRN

LLLLL 77,

| .

6.2.3 State of a system and and thermodynamic variables

!olutli: mechanics, the motion of a system in described by nolving its equation of metin the

n giving information relating to time-variation of the position veetor associate
the system. In a like manner,

represented by its condition at {

1 with
in thermodynamics, the atafe of a aystem ab any instagy §,

f . hat instant, the condition being completely specified by 4 4.,
of experimentally measurable quantities, called variables of stale or thermodynamie mariable,
For example, to a stretched wire correspond the thermodynamic variables tension and len g,
for a surface film the variables are the surface tension and the area; for a capacitor thay o,
e.m.f and the charge; for a hydrostatic system the variables are pressure and volure; and o,
on. The thermodynamic variables are also termed thermodynamic coordinates. A particularly
simple condition of state of a system is the equilibrium sfafe in which the variables apecilying

‘Ahr:. 8‘;;:;:0 time-independent, that is, do not change with time and are reproducible (Head

The thermodynamic variables may be of two different kinds: intensive and extensive,
Intensive variables of a system in a given state are those which are independent of its mass or
the number of particles. Extensive variables, on the other hand, are propertional to the mass or,
to the number of particles in the system. Tension, surface tension, e.m.f,, in the above examples

are intensive variables; length, area, charge are extensive variables. Pressure and temperature
are intensive, while volume is an extensive variable.

We give below the thermodynamic variables of some important thermodynamic systems.

Table 6.1 : Thermodynamic variables

System Intensive variable Extensive variable
1. Hydrostatic pressure, p volume, V
system
2. Surface film surface tension, S area, A
3. Stretched wire tension, F length, L
4. Electric cell potential difference, E charge, Z
5. Paramagnetic magnetic intensity, H dipole moment, M
substance

If y be a macroscopic parameter ghuacteriling the state of a homogeneous system and if
the system be divided, by a partition, into two parts or sub-systems having y-values y, and
respectively, thén

(i) v is extensive, if y = yy + yo
(ii) v is intensive, if y = y, = y,

If z,y be two arbitrary intensive variables, then zy, y/z, 8y/8z, z + y are also intensive. If
X,Y are two arbitrary extensive variables, then X + Y is also extensive, but Y/X,8Y/8X wre
intensive. Similarly, if z is intensive and X extensive, then =X, X /z,8X/8z will be extensive.
Extensive variables when referred to their specific values, that is, the vatue per unit mass of the
system are known as specific variables. Interestingly, a specific variable corresponding to any
extensive variable becomes, by definition, mass-independent and is thus an intensive variable.

iables by capital letters and their specific
ple, if V be the total volume of the system,

It is customary to designate the extensive var,
values by the corresponding small letters. For exam
v will represent the specific volume.



6.2.5 Thermodynamic processes

A system is said to undergo a (A
n,mfc variables or coordinates change

To analyse a thermodynamic process, the varintion of  p A
one thermodynamic variable is plotted with respect to an-
other and the plot is known as mdicator diagram (Fig.6.2). (Py,v1)
On such a diagram the state of a system is determined
uniquely by a point, And a process means a line connecting
a series of such points. In the adjacent diagram, the initial
state of the system is represented by the point (py, V1), the
system undergoes an expansion, and the final state of the
system is defined by the point (pz, V). The process is rep-

ermodynamie process, when the values of it thermog
from one equilibrinm atate to another. y-

resented by the curve shown in Fig.6.2. Indicator diagram (Pasvy)
here is p-V" diagram. >\
It is worth noting that joining the initial and final Fig.6.2 An Mdu;-’m

points by a line has an important implication in that the

intermediate states are also equilibrium states. And this at once imposes some restrictions as
regards the evolution of the thermodynamic process. Since the intermediate states are uniquely
defined, they being all equilibrium states, a thermodynamic. process can be made to retrace its
original path to reach back the initial state. How to execute the retracting (that is, what
conditions need be satisfied) however is a separate story. If retracing is possible, the process is
said to be reversible, if not it is said to be irreversible. All natural processes are irreversible.
We shall discuss reversibility later in greater detail.

The concept of reversibility facilitates the mathematical formulation of thermodynamics.
But how to analyse a natural process within the framework of such a formulation? The problem
has been overcome by introducing what may termed a guasi-static process, discussed in a
separate sub-section (6.2.9) that follows. Essentially, when a process is carried out extremely
slowly such that every state through which the system passes departs only infinitesimally from
equilibrium, the process is said to be quasi-static. A quasistatic process is thus a succession of
thermodynamic equilibrium states. For finite departures from equilibrium, the process becomes
non-quasistatic where system variables do not define the states through which the system passes.
They cannot also describe the processes the system undergoes, Consequently, a non-quasistatic
process cannot be represented by a line on the indicator diagram. :
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Fig.6.3 A cyclic process represented Fig.6.4 An isochoric and an
on p=V diagram isobaric process on p~V diagram
If the series of processes undergone by a system leads to its reversal back to th
state, the series constitutes a cyclic process and is repressented by a closed path on the in
diagram (Fig.6.3). Some processes, again, are so characterised that a thermodynamic €00f o

e initial
dic‘td’

of the ”-,t;m Femains constant l‘hrmlghmlt A proeess in which volume 1« &0 kept constant 18
(:‘“n; ;c\w "';:;‘(r::r:!}“l’\jt‘(' on the indieator diagram by a straight line parallel to the i. ”1
L e 0 V-t (Fig 0.0) o e it conmtant incalled sobane represeted by » line
™ £ e indicator diagram Similarly, a process in which temperature

ains constant is called 1 et .
Tk‘;n i o o tlhl N f"h""'ﬂ’n!l!l one in which there is no thermal interaction (exchange)
faking e system and its surroundings is called adiabatic.

§.2.6 Change In state in an infinitesimal process

If a system undergoes : :
\ goes a small change of state in making transition from an initial equi-

hb:Il\llm hsme to ;mo(hcr state very near Lo the former, all the coordinates in general, undergo
sm C.alnses- If th.e change in volume is small compared to V| but quite large compared
to the volume occupied by few molecules, we may denote it by diflrential dV. Sinee V is a
macroscopic coordinate, ‘dV’ will be meaningful when it is large enough to accommodate quite

a large number of molecules. Similarl : _
: Y, change of  large
the sense of moelcular fluctuation, and is degotidp;;sj‘:e is small compared to p, but large in

. istze zgeb:lntﬁ;nteslmﬂs in thermodynamics are characterised as small compared to the quan-
\ arge with reference to the behaviour of few molecules. As alteady stated in

kinetic theory, it mak i
oo 4 y € 1o sense In stating the temperature, volume and pressure of a few

It is obvious from the foregoing that the equation of state can be used to calculate the

physical parameters of the system lik vi
o kst 97, ystem like volume expansivity, bulk modulus etc. as has been

DO ——



6.3 First law of thermodynamics : Background and formulation

The first law of thermodynamics is a mathematical formulation of the quantitative aspect
of the law of conservation and transformation of energy.

The classical experiments of Davy, Rumford, Mayer and Joule led to the discovery of the
equivalence of heat and work. To arrive at the formulation of the first Jaw we consider a system
completely surrounded by adiabatic envelope but coupled to the surroundings so that work may
be done. It is possible to visualise many adiabatic paths connecting the initial and the final
states of the system. They are accompanied by non-static dissipative processes. The amount of
work done along different adiabatic paths indicated by indirect experiments is the same along

all the paths.
The generalised statement of this result is known as the first low of thermodynamics.

If a thermally insulated system is caused to change from an initial state to a final state,
the amount of work done is the same for all adiabatic paths connecting the state.

The dependence of the adiabatic work on only the initial and final states of the system and
its invariance with respect to.the path of transformation enables us to invoke a single-valued
function of state variables of the thermodynamic system, such that the value of the function in
the final state minus that at the initial state is equal to the adiabatic work. This function is
the tnfernal energy function U/ of the system and is therefore,

~Wiasha =0y =U;

the negative sign is in conformity with the signature of work.

For the work done by the system, W;_., is positive so that Uy < Uj;, that is, the internal
energy of the system decreases, consistent with the principle of conservation of energy. Similarly,
when work is done upon the system, Wi_; is negative, Uy > Uj;, the internal energy of the
system increases as expécted from the principle of conservation of energy. So in order to
measure the change in internal energy of a system, experiments involving adiabatic work must

be performed. In the laboratory, such experiments are difficult to carry out.

6.4 Mathematical formulation of the first law

The equation (i) of the previous Art. 6.3 may be written for an infinitesimal Proces o
dQ = dU + dw
For a chamical system undergoing quasi-static process

For a system of streched wire (elastic system)
dQ = dU/ - FdL, i

F and L being the tension and length respectively,
For a magnetic sysiem

dQ = dU - HdM (iv)
where H is the magnetic intensity and M , the magnetic moment.

From the foregoing analysis, we may conclude that the first law of thermodynamics is
more than a statement of the principle of conservation of energy. The formulation leads to the
existence of ‘infernal energy’ function U/ as single -valued function of state variables specifying
tl?e configuration of the thermodynamic system and defines ‘heat’ as energy duning transit by
virtue of temperature difference.



6.5 Applications of the flt t law

The first law of thermodynamics has been muccessfully applied to a number of p‘})"ic'}l
and chemical processes, both in the Inboratory and outside in nature. We shall discuss in this
section some of those applications.

Heat capacities :  For an infinitesimal quasistatic process performed by one gm. mol.
of a chemical system

dQ = dU + pdV (i)

3Q being not an exact differential, but dU/ and dV are; U and V being functions of coordinates
jefining the equilibrium state of the system.

Let us assume that U is a function of two independent variables T and V' of the system.

U=U(T,V)
_[{8U auv i
du = (ﬁ)vﬂ+ (W)Tdv Tii)
Substituting (ii) in (i), we obtain i
5 au au
0= () o+ o+ () )
For a process where V = const., dV = 0 (isochoric process). So, from (iii),
Lo _ (dQY _ (OU 3
o =(at), = (37), )

Cy being the heat capacity at constant volume. Since we have taken one gm. mol., it is also
the molar specific heat at constant volume.

Similarly, expressing both U/ and V' as functions of temperature T and pressure p, for an
infinitesimal quasistatic process

v au av av
da=(g7) o+ (5), 2+ (37) o+ (5) ) o
For a process where p = const., dp = 0 (isobaric process). So from (v), we get
e, = (99) = (X av 7
‘3"(dr),"(vr),+”(ar), )

where C, is the heat capacity at constant pressure. Here also it is the molar specific heat at
constant pressure.

For an isothermal quasistatic process, dT' = 0. We obtain from (iii) and (v)

(.:_3.)7 + (% : = Ly, say. (vii)
dQ\ _ (oU PN - - it
fad (Tf;)'r_ (8P)T+p(8}’)1‘—[". - il

We define Ly, the latent heat of czpansion, as the amount of heat required to increase the
volume of unit mass {or 1 gm. mol.) of the substance quasi-statically, temperature remaining

yomwey YO

| to incrense the pressure of unit mam of the ayste,

constant. Similarly, Ly is the heat requirec
at constant temperature,

h
From (vii) and (viii), using (i), nve

we "ﬂ\ctuvfly
dQ = CdT + LvdV

and dQ = CpdT' + Lydp A

. Gy — Cv : Fromea. (i

(ix)
(x)
ii) we obtain
Difference between specific honts ou ou av (xi)
Q) _ (%X { + (—-) } oT
C’=(_Q) —(8T)V+ r av T

T/,

=(:v+{t’+ (%)1}(%)r g
-cv= o (30) ) &7),

done in pushing back
= . o the amount of work ! al
i acket on the right gives t s how the internal energy
h s ﬁu;i;e"::nc;:it:;c pemaure. while the second terngn'; intermolecular forces.
:b e surrt:li;lh vogl.ume being associated with the work done agat
anges 3 - " -1- 91/.) , eq. (Xii) may be written as
Introducing the volume expansivity, 8= vV »

U\ gy = LyBV (i)
G, -Cv= {p+ (8V)T}ﬂ v
already defined.

= i here
= hat p(8V/8T), = R. Also, since ther
e l:yr;:o wthollyplsine{ic u:d remains unchanged in

where Ly is the latent heat of expansion,
Special cases — For & pcdi'ecl' gas, p
is no i:::r:noleculu attraction, its internal e.x:e(;
free ezpansion (see later). Thus, (3U/8V)r =0 -
From (xii) / Cp-Cv=R ol
For n gm. mol, it takes the form G Cy =nhR
is is kn as Mayer's relation. .

:'hl' '"‘l°:: however, the internal energy changes vmex volume, i:‘al work has to be done

agains?t:e in&egnn'oleculu forces. Taking the van der Waals' model of gases,

(p+a/V?)(V—b)=RT
We shall see later that (8U/0V)r = a/V*, so that from (xii)

RT [0V ) xv)
G =7=s (FT‘), :

Differentiating van der Waals equation

{p+%-("~§)%}(%)' =R

(ﬂ): R ___R(V-¥)
O/ pt = aa(V—b) RT— (V. — b

(3, gy o )



anding binomially and retaining terms up to first order in a which is very small.
From (xv), we thus obtain

G -C. = R{l + Ff,"vs(v = b)’} (xvi)

Comparing (xvi) with (xiv), it is observed that the difference in' more for a real gas. For
molecular separations, the second term in the bracket of (xvi) is ignorable and the result is
one with the perfect gas. Fig.6.7 shows that
the plot of (Cp —C,)/R vs. V for a van der
Waals' gas. It is observed that the ideal gas Cp-Cy 4
value is attained only at a large value of V. ‘ER_

Free expansion: In their experiments
on free expansion of a gas, Joule and Mayer __
obeerved that the temperature of the gas re- | g ey e = =
mains unaltered.

In the free expansion, a gas is kept in one
part of the vessel by a partition, the other
part evacuated. On removing the partition,
the gas is allowed to expand against vacuum
and fills the whole vessel (Fig.6.8). Free ex-
pansion is & non-static process and takes place
under thermal isolation. Since the gas ex-
pands against vacuum, no external work is
done by the gas.

N e e ——————

5 =\
Fig6.7 Plot of (C,~C.)/ R vs. V of a van der Waals' £
dQ=0, dw =0

Hence, from the first law, dU/ = 0.
i U is assumed to depend on T and V,

ou au
= (ar)7+ (5v),

Since dT" = 0 (as was observed by Joule and Mayer), and also dU = 0, we obtain

Fig6.8 Joule expansion (Free expanaion)

au :
-8—‘/—)1 =0, since dV # 0.

Similarly, taking U as a function of T' and p, we would get

U
(5;), o

The internal energy of such a system depends on temperature 7" only and is independent
o p and V. The results on change of temperature are valid only for an ideal gas, although
Joule ang Mayer performed experiments on real gases. The thermometers used by them for
Measurement of temperature after free expansion were of low precision and they considered the
&8ss used to obey the Boyle’s and Charles’ laws (ideal gases).

6.9 Work In quasi-static processes

1. (a) Isothermal expansion or compression of an ideal gas, the initial volume V

changing finally to V. The work

v, Vi pT
R N il g - o1
W AE— / pav = / — ) ph = nits)

2. Adiabatic expansion or compressio

n of an ideal
ing finally to V;. The work W4 is given by eal gas,

the initial volume V; chang-

V! V!.
W = / pdV =k / V=1dv (. pVT= k (const.))
Vi Vi
— k 1_.7 V.' k ]_7 1=
—‘y—l[V ]Vl_'y-l(vi =% 1)
piVi—p/Vy
y—1 (v B =k=pV]) (i)
R
c=7(B-T) (v mVi=RI: 5V =R1) (i)

=Cv (T: - Ty) (iv)
(" ¥=GCp/Cvand R=C, - Cy)

The relations (ii), (iii) and (iv) constitute the different expression for the adiabatic work
dr;e by an ideal gas. The corresponding expressions for a van der Waals’ gas are given else-
w .



.27 Some deductions from equation of state Combining (ii), (iii) and (iv), we obtain

The equation of state in the

arametr; iour of p\ _AVEr _
aten under diffiisat conditiing. parametric form may be used to study the behaviour of a (8__7‘)" - __V_ = fby ('.,,
Consider a hydrostatic system with the equation of state
fpV,T) =0 Thu§, for a given change in temperature, the increase in pressure will be more Whep
o, p=pVT) expansivity and also elasticity are large (compressibility small) and conversely,
1 =P, . '
P 5 ' Using (v), we get from (1)
Lodp= (22 v (_p_) T . (i) Er
: (av)r "o v dP=‘7dV+ﬁET‘fI‘ (vi)
where dp is an infinitesimal change in p. The (Gp/QV )1 expresses the rate of change of pressure : _ .
with volume when the temperature is constant, that is, in an isothermal process; (aplaf )u 18 For an 1sochoric process, (VI) reduces to
the rate of.change of pressure with temperature when the volume is kept constant, that is, for
an #sochoric process. ' dp= BEpdT (Vii)
For an isobaric process, dp = ( and eq. (i) becomes .
- | ( ap) ( ap) ( 3V) ” For a finite change in presure, the change in temperature is
=) i) (e il
or/, v )p\orT ), | = i
To attribute physical meaning to (i), we note that volume ezpansivity § of a material, in / dp=| PEpdT
an isobaric process, is given by i ot T,
|
; 'V(ﬁ), () or, p2=p1=PEr(T-Ty) (v
' it iprocal of isothermal ¢ ity K 1al i o 4 .
:l:gn :ioiahscnnal elasticity, Er, reciprocal of iso ompressibihty Ko, of a material is assuming ﬂ and Er constant in the temperature Faige cons o

| - T{l— =-V (g%) i) Thus,.if f and Er are experimentally determined, eq. (vili) provides the final pressure, in
L T T an isochoric process, for a given rise in temperature.



