University of Calcutta
Semester -1
PHYSICS

Paper: PHS-A-CC-1-1-TH (NEW SYLLABUS)

VECTOR: SOLVED PROBLEMS And ASSIGNMENTS

Dr. Koel Adhikary

Department of Physics

Government Girls' General Degree College

8. Find the angle between A = 2i + 2j - k and B = 6i - 3j + 2k.

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$
, $A = \sqrt{(2)^2 + (2)^2 + (-1)^2} = 3$, $B = \sqrt{(6)^2 + (-3)^2 + (2)^2} = 7$

$$\mathbf{A} \cdot \mathbf{B} = (2)(6) + (2)(-3) + (-1)(2) = 12 - 6 - 2 = 4$$

Then
$$\cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{AB} = \frac{4}{(3)(7)} = \frac{4}{21} = 0.1905$$
 and $\theta = 79^{\circ}$ approximately.

9. If $A \cdot B = 0$ and if A and B are not zero, show that A is perpendicular to B.

If
$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta = 0$$
, then $\cos \theta = 0$ or $\theta = 90^{\circ}$. Conversely, if $\theta = 90^{\circ}$, $\mathbf{A} \cdot \mathbf{B} = 0$.

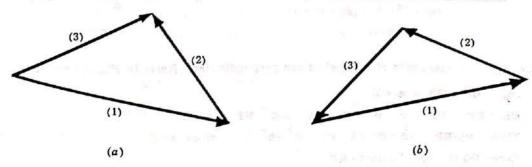
10. Determine the value of a so that A = 2i + aj + k and B = 4i - 2j - 2k are perpendicular.

From Problem 9, A and B are perpendicular if $A \cdot B = 0$.

Then
$$\mathbf{A} \cdot \mathbf{B} = (2)(4) + (a)(-2) + (1)(-2) = 8 - 2a - 2 = 0$$
 for $a = 3$.

1. Show that the vectors A = 3i - 2j + k, B = i - 3j + 5k, C = 2i + j - 4k form a right-angled triangle.

We first have to show that the vectors form a triangle.



From the figures it is seen that the vectors will form a triangle if

- (a) one of the vectors, say (3), is the resultant or sum of (1) and (2),
- (b) the sum or resultant of the vectors (1)+(2)+(3) is zero,

according as (a) two vectors have a common terminal point or (b) none of the vectors have a common terminal point. By trial we find A = B + C so that the vectors do form a triangle.

Since $A \cdot B = (3)(1) + (-2)(-3) + (1)(5) = 14$, $A \cdot C = (3)(2) + (-2)(1) + (1)(-4) = 0$, and $B \cdot C = (1)(2) + (-3)(1) + (5)(-4) = -21$, it follows that A and C are perpendicular and the triangle is a right-angled triangle.

13. Find the projection of the vector
$$A = i - 2j + k$$
 on the vector $B = 4i - 4j + 7k$.

A unit vector in the direction B is b =
$$\frac{B}{B} = \frac{4i-4j+7k}{\sqrt{(4)^2+(-4)^2+(7)^2}} = \frac{4}{9}i-\frac{4}{9}j+\frac{7}{9}k$$
.

Projection of A on the vector
$$\mathbf{B} = \mathbf{A} \cdot \mathbf{b} = (\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \cdot (\frac{4}{9}\mathbf{i} - \frac{4}{9}\mathbf{j} + \frac{7}{9}\mathbf{k})$$

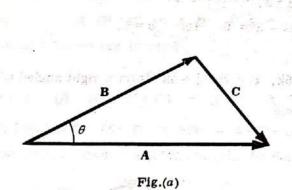
= $(1)(\frac{4}{9}) + (-2)(-\frac{4}{9}) + (1)(\frac{7}{9}) = \frac{19}{9}$.

14. Prove the law of cosines for plane triangles.

From Fig.(a) below,
$$B + C = A$$
 or $C = A - B$.

Then
$$\mathbf{C} \cdot \mathbf{C} = (\mathbf{A} - \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = \mathbf{A} \cdot \mathbf{A} + \mathbf{B} \cdot \mathbf{B} - 2\mathbf{A} \cdot \mathbf{B}$$

and
$$C^2 = A^2 + B^2 - 2AB \cos \theta.$$



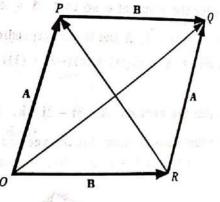


Fig.(b)

15. Prove that the diagonals of a rhombus are perpendicular. Refer to Fig.(b) above.

$$OQ = OP + PQ = A + B$$

$$OR + RP = OP$$
 or $B + RP = A$ and $RP = A - B$

Then
$$\mathbf{OQ} \cdot \mathbf{RP} = (\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = A^2 - B^2 = 0$$
, since $A = B$.

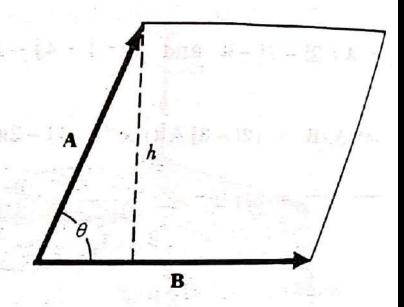
Hence OQ is perpendicular to RP.

30. Prove that the area of a parallelogram with sides A and B is $|\mathbf{A} \times \mathbf{B}|$.

Area of parallelogram =
$$h | \mathbf{B} |$$

= $|\mathbf{A}| \sin \theta | \mathbf{B} |$
= $|\mathbf{A} \times \mathbf{B}|$.

Note that the area of the triangle with sides A and $\mathbf{B} = \frac{1}{2} |\mathbf{A} \times \mathbf{B}|$.



32. Determine a unit vector perpendicular to the plane of A = 2i - 6j - 3k and B = 4i + 3j - k.

 $\mathbf{A} \times \mathbf{B}$ is a vector perpendicular to the plane of \mathbf{A} and \mathbf{B} .

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} = 15\mathbf{i} - 10\mathbf{j} + 30\mathbf{k}$$

A unit vector parallel to
$$\mathbf{A} \times \mathbf{B}$$
 is $\frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{15\mathbf{i} - 10\mathbf{j} + 30\mathbf{k}}{\sqrt{(15)^2 + (-10)^2 + (30)^2}} = \frac{3}{7}\mathbf{i} - \frac{2}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}$.

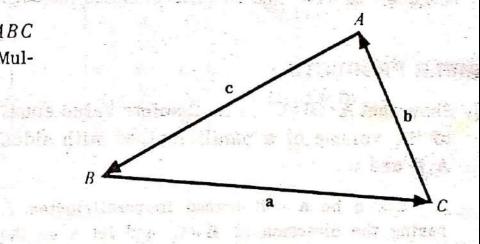
Another unit vector, opposite in direction, is (-3i + 2j - 6k)/7. Compare with Problem 16.

33. Prove the law of sines for plane triangles.

Let \mathbf{a} , \mathbf{b} and \mathbf{c} represent the sides of triangle ABC as shown in the adjoining figure; then $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$. Multiplying by $\mathbf{a} \times \mathbf{b} \times \mathbf{a}$ and $\mathbf{c} \times \mathbf{b}$ in succession, we find

i.e.
$$ab \sin C = bc \sin A = ca \sin B$$

or $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.



· 2000年,120年1月2日 17年1月1日 17日本市。

43. Prove that a necessary and sufficient condition for the vectors A, B and C to be coplanar is that $A \cdot B \times C = 0$.

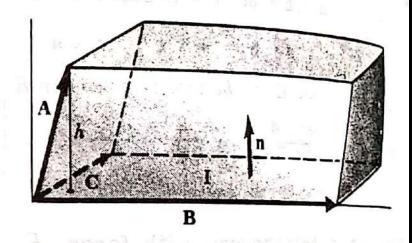
Note that $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$ can have no meaning other than $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$.

If A, B and C are coplanar the volume of the parallelepiped formed by them is zero. Then by Problem 37, $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = 0$.

Conversely, if $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{0}$ the volume of the parallelepiped formed by vectors \mathbf{A} , \mathbf{B} and \mathbf{C} is zero, and so the vectors must lie in a plane.

37. Show that $A \cdot (B \times C)$ is in absolute value equal to the volume of a parallelepiped with sides A, B and C.

Let **n** be a unit normal to parallelogram I, having the direction of $\mathbf{B} \times \mathbf{C}$, and let h be the height of the terminal point of A above the parallelogram I.



Volume of parallelepiped = (height h) (area of parallelogram I)
=
$$(\mathbf{A} \cdot \mathbf{n}) (|\mathbf{B} \times \mathbf{C}|)$$

= $\mathbf{A} \cdot \{|\mathbf{B} \times \mathbf{C}| \mathbf{n}\} = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$

If A, B and C do not form a right-handed system, $A \cdot n < 0$ and the volume = $|A \cdot (B \times C)|$.

Assignment-1

For what values of 'a' are $\vec{A} = a\hat{i} - 2\hat{j} + \hat{k}$ and $\vec{B} = 2a\hat{i} + a\hat{j} - 4\hat{k}$ perpendicular?

2. Find the projection of the vector 21-3j +6k on the vector 21+2j+2k.

3) It A = 41 - j + 3k and B = -21 + j - 2k, find a unit normal to both A and B.

Find the work done in moving an object along a straight line from (3, 2, -1) to (2, -1, 4) in a force field given by $\vec{F} = 4\hat{1} - 3\hat{j} + 2\hat{k}$.