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1 Energy of a vibrating string

The string posses kinetic energy due to its motion and potential energy due to its dis-
placement against restoring forces.

The general displacement of the vibrating string at any point x at any time t is given
by
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1.1 Calculation of kinetic energy

If we choose an elementary length δx of the string at x whose instantaneous displacement
is y , the K.E. of the element at that instant 1

2
mδx(ẏ)2. Hence, the kinetic energy of the

whole string at the instant t is
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1.2 Calculation of Potential energy

Let δs be the length of the element when displaced. The workdone against the tension T
to stretch the element from δx to δs is T (δs−δx). This workdone is stored in the element
as potential energy. Now, from figure,

(δs)2 = (δy)2 + (δx)2

or
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neglecting higher order terms. Thus the Potential energy of the whole string is
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Hence from equation (4)
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∴ The total energy of the vibrating string at time t is
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Since the frequency of the s th mode of vibration is given by,
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We have from (6)
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wher M = ml= mass of the whole string. Thus the total energy of a particular mode is
proportional to the square of the frequency and the square of the amplitude of that mode
of vibration.
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