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Damped oscillation
Dr. Soma Mandal,
Assistant professor,

Department of Physics, Government Girls’ General Degree College, Kolkata

1 Damped Simple Harmonic Motion(without any ex-

ternal force)

Let a particle of mass m undergo a SHM in a resistive medium along x− direction. The
restoring force acting on the particle at any instant t is proportional to the instantneous
displacement of the particle, while the damping force acting on it is proportional to the
instantaneous velocity of the particle. Thus if x be the displacement of the particle at
time t its equation of motion is given by

m
d2x

dt2
= −kdx

dt
− sx (1)

, where k and s are constant. or

d2x

dt2
+ 2b

dx

dt
+ ω2x = 0 (2)

where, 2b = k
m

, ω2 = s
m

, k is the damping factor.
Let x = eαt be a trial solution of equation 2

∴ α2eαt + 2bαeαt + ω2eαt = 0

or

α2 + 2bα + ω2 = 0[∵ eαt 6= 0]

∴ α = −b±
√

(b2 − ω2)

Hence the general solution of equation 2 is given by

∴ x = Ae(−b+
√

(b2−ω2)t +Be(−b−
√

(b2−ω2)t

x = e−bt
[
Ae
√

(b2−ω2)t +Be−
√

(b2−ω2)t
]

(3)

where A and B are two arbitrary constants. The nature of the solution depends critically
on the value of the damping coefficient b, and the behaviour is quite different depending
on whether b > ω, b < ω or b = ω.
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Figure 1: An overdamped harmonic oscillator approaching equilibrium slowly.

1.1 Special case

1.1.1 Case I: Over damped oscillations

If the damping force is large, we take b2 > ω2. Let the particle start from a position
x = a, where its instantaneous velocity is zero.

∴ from equation 2

a = A+B (4)

Again

dx

dt
= −be−bt

[
Ae
√

(b2−ω2)t +Be−
√

(b2−ω2)t
]

+ e−bt
[
A
√
b2 − ω2e

√
(b2−ω2)t −B

√
b2 − ω2e−

√
(b2−ω2)t

]
∵ dx

dt
= 0 at t = 0

∴ 0 = −b [A+B] +
√
b2 − ω2(A−B)

or

A−B =
ab√

b2 − ω2
(5)

from 4 and 5, we have

A =
a

2

(
1 +

b√
b2 − ω2

)
(6)

B =
a

2

(
1− b√

b2 − ω2

)
Thus the instantaneous displacement of the particle may be written as

x = e−bt
[
a

2

(
1 +

b√
b2 − ω2

)
e
√
b2−ω2t +

a

2

(
1− b√

b2 − ω2

)
e−
√
b2−ω2t

]
(7)

The motion is obviously non-oscillatory or dead-beat type. The motion is started with
an initial displacement but no initial velocity. The displacement gradually falls off to zero
with time and the body returns to the equilibrium position without any oscillation about
the equilibrium position. The graphical analysis of the vibration is depicted in Figure1.
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1.1.2 Case II: Under damped oscillations

If the damping is small, we take b2 < ω2 ∴
√
b2 − ω2 = i

√
ω2 − b2 where i =

√
−1

From the equation 3 , we get

x = e−bt
[
Aei

√
ω2−b2t +Be−i

√
ω2−b2t

]
= e−bt

[
(A+B) cos

√
ω2 − b2t+ i(A−B) sin

√
ω2 − b2t

]
Let A1 and A2 be the real parts of the constants (A+B) and i(A−B) respectively. Then

x = e−bt
[
A1 cos

√
ω2 − b2t+ A2 sin

√
ω2 − b2t

]
(8)

Since at t = 0, x = a and dx
dt

= 0 ∴ from equation 8 a = A1

∴ x = e−bt
[
a cos

√
ω2 − b2t+ A2 sin

√
ω2 − b2t

]
or

dx

dt
= −be−bt

[
a cos

√
ω2 − b2t+ A2 sin

√
ω2 − b2t

]
+ e−bt

[
−a
√
ω2 − b2 sin

√
ω2 − b2t+ A2

√
ω2 − b2 cos

√
ω2 − b2t

]
or

A2 =
ab√

ω2 − b2

Hence equation 8 can be written as

x = ae−bt
[
cos(
√
ω2 − b2)t+

b√
ω2 − b2

sin(
√
ω2 − b2)t

]
(9)

Now let us put 1 = R cos θ and b√
ω2−b2 = R sin θ, where R and θ are given by R = ω√

ω2−b2

and θ = tan−1 b√
ω2−b2 .

∴ x = ae−bt
[
R cos θ cos(

√
ω2 − b2)t+R sin θ sin(

√
ω2 − b2)t

]
or

x =
aωe−bt√
ω2 − b2

[
cos
(√

ω2 − b2t− θ
)]

(10)

As evident from equation 10, the vibration of the particle is an oscillatory due to the
presence of the cosine term. The amplitude of the vibration is given by aωe−bt

√
ω2−b2 . Due

to the presence of the factor e−bt in the amplitudes, the vibration of the article gets
proressively contracted as time goes on. The time period of the oscillatory motion is
given by T = 2π√

ω2−b2 . As t −→ ∞, x −→ 0 which implies that the variation persists
theoretically for an infinitely period of time, after which the amplitude reduces to zero
value. The motion is graphically depicted in Figure 2.
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Figure 2: Underdamped oscillations within an exponential decay envelope.

1.1.3 Case III: Critial damping

If b2 −→ ω2, the motion of the particle is intermediate between a dead beat type and an
oscillatory type. In this transitional case

√
b2 − ω2 is very small.

Now from case I equation 7 we have

x =
a

2
e−bt

[(
1 +

b√
b2 − ω2

)
e(
√
b2−ω2)t +

(
1− b√

b2 − ω2

)
e−(
√
b2−ω2)t

]
=

a

2
e−bt

[(
e(
√
b2−ω2)t + e−(

√
b2−ω2)t

)
+

b√
b2 − ω2

(
e(
√
b2−ω2)t + e−(

√
b2−ω2)t

)]
=

a

2
e−bt

[(
1 +
√
b2 − ω2t+ 1−

√
b2 − ω2t

)
+

b√
b2 − ω2

(
1 +
√
b2 − ω2t− 1 +

√
b2 − ω2t

)]
Neglecting the higher order terms

x = e−bt(a+ abt)

= e−bt(A+Bt) (11)

where we put a = A; ab = B
Equation 11 represents a critically damped vibration which is intermediate between the
cases studied above. Figure 3 shows this situation is also non-oscillatory. But here the
decay is much faster than the overdamped case. The motion is now said to be critically
damped.

There are two physical effects play in a damped oscillator. The first is the damping
which tries to bring any motion to stop. This operates on a time scale Td ≈ 1/b. The
restoring force exerted tries to make the system oscillate and this operates on a time-scale
T0 = 1/ω. We have overdamped oscillations if the damping operates on a shorter time-
scale compared to the oscillations i.e.Td < T0 which completely destroyes the oscillatory
behaviour.
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Figure 3: Time evolution of the amplitude of a critically damped harmonic oscillator.

2 Damped LC oscillations (LCR circuit)

If resistance R is present in an LC circuit, the total energy

U =
1

2
Li2 +

q2

2C

is no longer constant, but decreases with time as it is transformed steadily to thermal
energy in the resistor:

dU

dt
= −i2R

Hence

Li
di

dt
+
q

C

dq

dt
= −i2R

Substituting i = dq
dt

and di
dt

= d2q
dt2

and dividing by i, we get

L
d2q

dt2
+R

dq

dt
+

1

C
q = 0

q̈ + 2bq̇ + ω2q = 0 (12)

which is the differential equation that describes the damped oscillations.
The general solution of equation 12 can be written as

q = Qe−bt cos(ω′t− θ). (13)

Here b = R
2L

, ω = 1√
Lc

, ω′ =
√
ω2 − b2.
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3 Assignment II

1. Obtain solution for critical damping as a limiting case (b −→ ω of overdamped solution.
2. An under-damped oscillator has a time period of 2s and the amplitude of oscillation
goes down by 10% in one oscillation.
(a) what is the logarithmic decrement of the oscillator?
(b) Determine the damping coefficient b.
(c) What would be the time period of this oscillator if there was no damping?
(d) What should be b if the time period is to be increased to 4s?
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