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1 Resonance and sharpness of resonance

In the steady state, the instantaneous displacement of the system is given by

x = x2 = A sin(pt− α)

Kinetic energy of the system at time t is

T =
1

2
mẋ2 =

1

2
mA2p2 cos2(pt− α)

Since, in a particular motion the total energy of a system remains constant which is
equal to the maximum of its kinetic energy. We may write

total energy = E = (K.E)max = 1
2
A2p2

or

E =
1

2
mp2

f 2

(ω2 − p2)2 + 4b2p2

=
1
2
mf 2

ω2
(
ω
p
− p

ω

)2
+ 4b2

If p = ω, the energy of the system is maximum for any given value of b. Thus when
frequency of the driver coincides with the natural frequency of the driven, the energy
of the driven system is maximum. This phenomenon is known as velocity resonance or
energy resonance or resonance. Writing ∆ = ω

p
− p

ω
=mistuning between the driver and

the driven.

E =
1
2
mf 2

ω2∆2 + 4b2
(1)

E is called the energy of response of the driven system. Evidently, E will be maximum
when ∆ = 0.

E =
1
2
mf 2

4b2
(2)

This Em is called the energy of resonance.
As evident from equation 1, the energy of response correspong to a particular mistuning

(∆) is larger for a smaller value of the damping of the medium. The graphical analysis
of E versus ∆ is shown in Figure 1.
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Figure 1: Response curves for different values of b

1.1 Sharpness of resonance

When ∆ = 0, E = Em, and the situation is called velocity (or energy) resonance or
simply resonance. In order to study how sharp the resonances, we must consider the
factors controlling resonance. Quantitatively , the sharpness of resonance (S) is defined
as the reciprocal of the mistuning (∆) at which the energy of response is half that at
resonance. Now

Em
E

=
ω2∆2 + 4b2

4b2
= 1 +

ω2∆2

4b2

∵ E
Em

= 1
2

∴
Em
E

= 2 = 1 +
ω2∆2

4b2

or

ω2∆2

4b2
= 1

or

1

∆
= ± ω

2b

S = ± ω
2b

(3)

It is evident from equation 3 that the sharpness of resonance, is larger for smaller values
of b.

The following curves (shown in Figure 2)represent the sharpness of resonance for
different values of b.

As evident from the above curves, E
Em

or Em

E
−→ 1 if b −→∞ for any mistuning (∆).

Hence the resonance in this case is entirely flat.As when b is small the curves are very
sharp near resonance. As b increases, the sharpness decreases and the resonance tries to
become flat.
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Figure 2: Sharpness of resonance for different values of b

1.2 Quality factor Q

Quantitatively the sharpness of resonance is measured in terms of quality factor Q which
is defined by Q = Resonantfrequency

Bandwidth
.

we have

∆ =
ω

p
− p

ω

Suppose the angular frequency of the force is slightly larger than ω; then at that angular
frequency p = ω + δp, ∆ is given by

∆ =
ω

ω + δp
− ω + δp

ω

=

(
1 +

δp

ω

)−1

−
(

1 +
δp

ω

)
= −2

δp

ω

as δp is very small. Suppose a amall change in p from ω to ω + δp or ω − δp causes E
Em

fall to half. Then

1

∆
= ±ω2b =

ω

2δp
= ±Q

where Q is the ratio of frequency at resonance to the difference in frequencies at points
where power dissipation decreases to half that at resonance. Q is called the quality factor.

Q =
1

∆
=
ω

2b
=
mn

k
.
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1.3 Problem 1

In the steady state forced vibration describe how the phase of the driven system changes
with frequency of the driving system.

Solution: The phase difference between the driver and the driven system is given by

α = tan−1

(
2bp

ω2 − p2

)
so that

sinα =
2bAP

f

and

cosα =
A(ω2 − p2)

f

(i) If p < ω, both sinα and tanα are positive ⇒ 0 < α < π
2
.

(ii) If p > ω, sinα is positive but tanα is negative. ⇒ π
2
< α < π.

(iii) If p → ∞, tanα → 0, sinα → 0. Hence α → π. Thus for any value of p, α lies
between 0 and π.

(iv) If p = ω, α = π
2

(at resonance). Thus at velocity resonance the driven system lags
behind the driver by an angle π

2
.

(v) When p = 0, α = 0. There is no difference of phase between the driven system and
the impressed force.

∴
dα

dp
=

1

1 +
(

2bp
ω2−p2

)2 (ω2 − p2).2b+ 2bp.2p

(ω2 − p2)2

=
1

1 + 4b2p2

(ω2−p2)2

(ω2 + p2).2b

(ω2 − p2)2

=
(ω2 + p2)2b

(ω2 − p2)2 + 4b2p2

∴
dα

dp at resonance
=

2ω2.2b

4b2ω2
=

1

b
[∵ p = w]

It is evident that the rate of change of α with p is larger at resonance for a medium with
small damping co-efficient and vice-verse. This is illustrated in Figure 3.
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Figure 3: The variation of α with p

1.4 Power dissipation

Show that the rate of supply of energy by the driver is equal to the the rate of dissipation
of energy by the driven system against the damping force in the steady state.

Let us assume that the driving force Fsinpt is displaced through an elementay length
dx in time dt after t. Hence the work done by the force in time dt is Fsinpt.dx. If T be
the periodic time of vibration, the average rate of supply of energy by the driver is

W1 =
1

T

∫
0

T

F sin pt
dx

dt
dt

Now

x = A sin(pt− α)

∴
dx

dt
= Ap cos(pt− α)

∴ W1 =
1

T
FAp

∫
0

T

F sin pt cos(pt− α)dt

=
FAp

T

[∫
0

T

sin pt cos(pt) cosαdt+

∫
0

T

sin2 pt sinαdt

]
=

FAp

T

[
0 +

T

2
sinα

]
=

FAp

2
sinα

Now,

sinα =
2bAp

f
(4)
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∴ W1 =
FAp

2

2bAp

f

=
FA2p2b

f

= mA2p2
k

2m

[
∵
F

f
= m; 2b =

k

m

]
=

1

2
kA2p2 (5)

Again, let us assume that the driven system undergoes an elementary displacement
δx in a time interval δt after t against the frictional force of the medium. Hence the
workdone against the damping in time δt is k dx

dt
.δx.

Therefore average rate of dissipation of energy against the frictional force in a complete
period T is

W2 =
1

T

∫
0

T

k
dx

dt

dx

dt
dt

=
k

T
A2p2

∫
0

T

cos2(pt− α)dt

=
k

T
A2p2

T

2

=
1

2
kA2p2 (6)

From equation 5 and 6 W1 = W2. Hence the theorem is established.
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