Transverse vibration of a stretched string
 Dr. Soma Mandal, Assistant professor, Department of Physics, Government Girls' General Degree College, Kolkata

1 Velocity of transverse vibration of a stretched string

We consider a stretched string of lebgth l rigidly fixed at its end points. In the undisturbed orientation the string lies along X - axis. If this string be excited to transverse vibration, transverse wave will be generated from the point of excitation.

We choose an elementay portion $A B$ of string of length δx. In course of vibration let the configuration of this portion at any time t be $A^{\prime} B^{\prime}$, such that the displacement of the point A is y and that of B is $y+\delta y$. If the displacement be small the tension T acting on the string will remain constant.

For the displaced portion $A^{\prime} B^{\prime}$ of the string, the tension of A^{\prime} acts along the tangent $A^{\prime} M$ while that at the point B^{\prime} acts along the tangent $N B^{\prime}$. Thus the net force acting on the element $A^{\prime} B^{\prime}$ along Y direction at time t is

$$
\begin{align*}
T\left(\sin \theta_{2}-\sin \theta_{1}\right) & =T\left(\tan \theta_{2}-\tan \theta_{1}\right) \quad\left[\text { As } \theta_{1} \text { and } \theta_{2} \text { are each small }\right] \\
& =T\left[\frac{\partial}{\partial x}(y+\delta y)-\frac{\partial y}{\partial x}\right] \\
& =T\left[\frac{\partial}{\partial x}\left(y+\frac{\partial y}{\partial x} \delta x\right)-\frac{\partial y}{\partial x}\right] \\
& =T \frac{\partial^{2} y}{\partial x^{2}} \delta x \tag{1}
\end{align*}
$$

If m be the mass per unit length of the string and $\frac{\partial^{2} y}{\partial x^{2}}$ represents the acceleration of the portion of the string at time t, we must have

$$
T \frac{\partial^{2} y}{\partial x^{2}} \delta x=m \delta x \frac{\partial^{2} y}{\partial t^{2}}
$$

where $m \delta x$ is the total mass of the element δx. or

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{m} \frac{\partial^{2} y}{\partial x^{2}}
$$

or

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{2}
\end{equation*}
$$

where $v=\sqrt{\frac{T}{m}}=$ velocity of propagation of transverse waves along the length of the string. The general solution of equation 2 is given by

$$
\begin{equation*}
y=f_{1}(v t-x)+f_{2}(v t+x) \tag{3}
\end{equation*}
$$

where $f_{1}(v t-x)$ represents a wave proceeding along $+v e x$ direction, while $f_{2}(v t-x)$ denotes another wave travelling along $-v e x$ direction.

Figure 1: Transverse vibration of a stretched string

2 Production of stationary waves on string

We have from equation 2 the general wave equation correspond to transverse vibration of the stretched string as

$$
\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

Let

$$
\begin{equation*}
y(x, t)=\phi(x) \theta(t) \tag{4}
\end{equation*}
$$

where $\phi(x)$ is exclusively a function of x and $\theta(t)$ is entirely a function of t.

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial t^{2}}=\phi(x) \frac{\partial^{2} \theta}{\partial t^{2}} \\
& \frac{\partial^{2} y}{\partial x^{2}}=\theta(t) \frac{\partial^{2} \phi}{\partial x^{2}}
\end{aligned}
$$

From equation 2

$$
\phi(x) \frac{\partial^{2} \theta}{\partial t^{2}}=v^{2} \theta(t) \frac{\partial^{2} \phi}{\partial x^{2}}
$$

or

$$
\begin{equation*}
\frac{1}{\theta} \frac{\partial^{2} \theta}{\partial t^{2}}=\frac{v^{2}}{\phi} \frac{\partial^{2} \phi}{\partial x^{2}} \tag{5}
\end{equation*}
$$

The L.H.S of the equation is exclusively a function of t while the R.H.S is entirely a function of x. Hence, each side must be a constant. The constant is real, and for the
finite bounded vibration of the string this constant must be $-v e$. We choose it as ω^{2}. Thus from equation 5

$$
\begin{align*}
& \frac{\partial^{2} \theta}{\partial t^{2}}+\omega^{2} \theta=0 \tag{6}\\
& \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\omega^{2}}{v^{2}} \phi=0 \tag{7}
\end{align*}
$$

The general solution of 6 is given by

$$
\begin{equation*}
\theta(t)=A \cos \omega t+B \sin \omega t \tag{8}
\end{equation*}
$$

and that of 7 is given by

$$
\begin{equation*}
\phi(x)=C \cos \frac{\omega x}{v}+D \sin \frac{\omega x}{v} \tag{9}
\end{equation*}
$$

where A, B, C and D are arbitrary constants. Thus, the general solution of equation 2 is written as

$$
\begin{equation*}
y=(A \cos \omega t+B \sin \omega t)\left(C \cos \frac{\omega x}{v}+D \sin \frac{\omega x}{v}\right) \tag{10}
\end{equation*}
$$

Since $y=0$ both at $x=0$ and $x=l$ (l=length of the string) for all time t, we have from 10

$$
\begin{align*}
& 0=(A \cos \omega t+B \sin \omega t) C \Rightarrow C=0 \\
& \therefore y=(A \cos \omega t+B \sin \omega t) D \sin \frac{\omega l}{v} \tag{11}\\
& \quad \Rightarrow \sin \frac{\omega l}{v}=0, \because D \neq 0
\end{align*}
$$

Since, in this case $\phi(x)$ becomes trivial

$$
\begin{align*}
\therefore \sin \frac{\omega l}{v} & =0 \\
\text { or } \frac{\omega l}{v} & =s \pi \text { where } s=1,2,3 \ldots \\
\text { or } \omega & =\frac{s \pi v}{l} \tag{12}
\end{align*}
$$

Hence from equation 11

$$
\begin{align*}
& y=\left(A \cos \frac{s \pi v t}{l}+B \sin \frac{s \pi v t}{l}\right) D \sin \frac{s \pi x}{l} \\
& y=\left(A_{s} \cos \frac{s \pi v t}{l}+B_{s} \sin \frac{s \pi v t}{l}\right) \sin \frac{s \pi x}{l} \tag{13}
\end{align*}
$$

where $A_{s}=A . D$ and $B_{s}=B . D$ But

$$
\begin{equation*}
\omega=\frac{s \pi}{l} \sqrt{\frac{T}{m}} \quad\left(\because v=\sqrt{\frac{T}{m}}\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \frac{\omega}{2 \pi}=f_{s}=\frac{s}{2 l} \sqrt{\frac{T}{m}} \tag{15}
\end{equation*}
$$

This f_{s} represent the characteristic frequencies of the s th mode of vibration of the string. Hence the frequency of the fundamental tone is

$$
\begin{equation*}
f_{1}=\frac{1}{2 l} \sqrt{\frac{T}{m}} \tag{16}
\end{equation*}
$$

Since equation (2) is a linear homogeneous equation and equation (13) represents a solution of equation (2) corresponding to the s th mode of vibration, the sum solution for all possible values of s will again be a solution of (2). Thus the complete solution of equation (2) is given by

$$
\begin{equation*}
y=\sum_{s=1}^{\infty}\left(A_{s} \cos \frac{s \pi v t}{l}+B_{s} \sin \frac{s \pi v t}{l}\right) \sin \frac{s \pi x}{l} \tag{17}
\end{equation*}
$$

