matrices

Dr. Soma Mandal
Department of Physics
Government girls' general degree college

Syllabus

3. Matrices

15 Lectures
(a) Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix.
(b) Eigen-values and Eigenvectors (Degenerate and non-degenerate). Cayley-Hamiliton Theorem. Diagonalization of Matrices. Solutions of Coupled Linear Ordinary homogeneous Differential Equations. Functions of a Matrix.

WHAT DO YOU MEAN BY MATRICES?

- Let us consider a set of simultaneous equations,

$$
\begin{gathered}
x+2 y+3 z+5 t=0 \\
4 x+2 y+5 z+7 t=0 \\
3 x+4 y+2 z+6 t=0
\end{gathered}
$$

$A=\left[\begin{array}{llll}1 & 2 & 3 & 5 \\ 4 & 2 & 5 & 7 \\ 3 & 4 & 2 & 6\end{array}\right]$

- A system of numbers, arranged in a rectangular array in rows or columns and bounded by the brackets, is called a matrix.

VARIOUS TYPES OF MATRICES

* Row Matrix [2,7,3,9]
* Column Matrix $\left[\begin{array}{l}2 \\ 8 \\ 9\end{array}\right]$
* Null/Zero Matrix : A matrix in which each entry is zero is called a zero matrix. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
* Squarre Matrix: : A matrix having the number of rows is equal to the number of columns is called a square matrix. $\left[\begin{array}{cc}-1 & 2 \\ 4 & 9\end{array}\right],\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 0 & 3 \\ 4 & 2 & 0\end{array}\right]$

Diagonal Matrix: A square matrix is said to be diagonal matrix if the non-zero entries appear only on the principal diagonal. $\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]$

* A diagonal matrix \mathbf{D} of order n with the diagonal entries $d_{1}, d_{2}, d_{3} \ldots \ldots . d_{n}$ is denoted by $D=\operatorname{diag}\left(d_{1}, \ldots, \ldots, d_{n}\right)$. If $d_{i}=d$ for all $i=1,2, \ldots . n$ then the diagonal matrix \mathbf{D} is called a scalar matrix.

VARIOUS TYPES OF MATRICES

* Unit or Identity Matrix: A square matrix $A=\left[a_{i j}\right]$ with $a_{i j}\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$ is called the identity matrix. Example: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
* A square matrix is set to be upper triangular if $a_{i j}=0$ for $i>j$. Example: $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 4 & 3 \\ 0 & 0 & 6\end{array}\right]$
* A square matrix is set to be lower triangular if $a_{i j}=0$ for $i<j$. Example: $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 4 & 0 \\ 2 & 3 & 6\end{array}\right]$
* A square matrix is said to be Triangular Matrix if it is an upper or lower triangular matrix.

