MOETiCES: operation on matrices

Dr. Soma Mandal
Department of Physics
Government girls' general degree college

OPERATION ON MATRICES

- Transpose of a matrix
- The transpose of a $\mathrm{m} \times n$ matrix $A=\left[a_{i j}\right]$ is defined as the $n \times m$ matrix $B=\left[b_{i j}\right]$ with $b_{i j}=a_{i j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. The transpose of A is denoted by A^{T}.
If $A=\left[\begin{array}{lll}1 & 4 & 5 \\ 0 & 1 & 2\end{array}\right]$, then $A^{T}=\left[\begin{array}{ll}1 & 0 \\ 4 & 1 \\ 5 & 2\end{array}\right]$
Thus the transpose of a row vector is a column vector and vice-versa.
- For any matrix A, we have $A^{T^{T}}=A$.

Let $A=\left[a_{i j}\right], A^{T}=\left[b_{i j}\right]$ and $A^{T^{T}}=\left[c_{i j}\right]$.
Then the definition of transpose gives $c_{i j}=b_{j i}=a_{i j}$ for all i, j and the result follows.

SYMMETRIC, SKEW-SYMMETRIC AND ORTHOGONAL MATRIX

* Symmetric matrix : A matrix A is called symmetric if $A^{T}=A$
$\mathbf{A}=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right], \mathbf{B}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & -1 \\ 3 & -1 & 4\end{array}\right]$ are symmetric matrices.
* Skew Symmetric matrix: A matrix \mathbf{C} is called skew symmetric if $A^{T}=-A$

If $\mathbf{C}=\left[\begin{array}{ccc}0 & -h & -g \\ h & 0 & -f \\ g & f & 0\end{array}\right], \mathbf{C}$ is a skew symmetric matrix.

- A matrix is said to be orthogonal if $A A^{T}=A^{T} A=I$.
* $A=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right]$ is an orthogonal matrix.

ADDITION OF MATRICES

- Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices. Then the sum $A+B$ is defined to be the matrix $C=\left[c_{i j}\right]$ with $c_{i j}=a_{i j}+b_{i j}$. Matrices must have the same dimensions.

$$
A=\left[\begin{array}{ccc}
4 & 2 & 5 \\
1 & 3 & -6
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 4
\end{array}\right] \quad A+B=\left[\begin{array}{ccc}
5 & 2 & 7 \\
4 & 4 & -2
\end{array}\right]
$$

- Subtraction is identical to addition. $\left[\begin{array}{ll}9 & 4 \\ 3 & 1\end{array}\right]-\left[\begin{array}{ll}7 & 2 \\ 1 & 6\end{array}\right]=\left[\begin{array}{cc}2 & 2 \\ 2 & -5\end{array}\right]$
- Properties of matrix addition:
- Communicative law of addition $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

Associative law of addition $\quad A+(B+C)=(A+B)+C$

- Exercise:

Suppose $A+B=A$. Then show that $B=0$.
Suppose $\mathrm{A}+\mathrm{B}=0$. Then show that $\mathrm{B}=(-1) \mathrm{A}=\left[-a_{i j}\right]$.

MATRIX MULTIPLICATION

- Multiplying a scalar to a matrix

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix, for any element $k, k A=\left[k a_{i j}\right]$.
If $A=\left[\begin{array}{ccc}1 & 4 & 5 \\ 0 & 1 & 2\end{array}\right]$ and $k=3$; then $3 A=\left[\begin{array}{ccc}3 & 12 & 15 \\ 0 & 3 & 6\end{array}\right]$.

- Matrix multiplication/Product:

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and $B=\left[b_{i j}\right]$ be an $n \times r$ matrix. The product $A B$ is a
matrix $C=c_{i j}$ of order $m \times r$ with
$c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$.
The product $A B$ is defined if and only if
THE NUMBER OF COLUMNS OF A= THE NUMBER OF ROWS OF B

- To multiply two matrices

1) Multiply each element in a given row by each element in a given column.
2) Sum up their products.

MATRIX MULTIPLICATION

- Example:
$\square\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \times\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]=\left[\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right]=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]$
- $\left[\begin{array}{ll}3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=[(3 \times 1)+(2 \times 3)(3 \times 2)+(2 \times 4)]=\left[\begin{array}{ll}9 & 14\end{array}\right]$
- Properties of matrix multiplication
* Matrix multiplication is not commutative. $A B \neq B A$.

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] ; \mathrm{B}=\left[\begin{array}{cc}0 & -1 \\ 6 & 7\end{array}\right]$
$A B=\left[\begin{array}{ll}12 & 13 \\ 24 & 25\end{array}\right]$ but $B A=\left[\begin{array}{cc}-3 & -4 \\ 27 & 40\end{array}\right]$

* Associative law: Matrix multiplication is associative $(A B) C=A(B C)=A B C$
* Distributive law: Matrix multiplication is distributive with respect to addition $A(B+C)=A B+A C$
* For any $k,(k A) B=\mathrm{k}(\mathrm{AB})=\mathrm{A}(\mathrm{kB})$.
* If A is an $n \times n$ matrix then $A I_{n}=I_{n} A=A$.

EXERCISE:

- Let A and B two matrices. If the matrix addition $A+B$ is defined, then prove that $(A+B)^{T}=A^{T}+B^{T}$. Also if the matrix product AB is defined then prove that $(A B)^{T}=B^{T} A^{T}$ 。
- Let $A=\left[a_{1}, a_{2}, \ldots . a_{n}\right]$ and $B=\left[\begin{array}{l}b_{1} \\ b_{2} \\ \cdot \\ b_{n}\end{array}\right]$. Compute the matrix product $A B$ and $B A$.

