More on matrices

Soma Mandal

Department of Physics, Government Girls' General Degree College

January 25, 2021

SEMESTER-I Paper: PHS-A-CC-1-1-TH

Conjugate of a Matrix

Let A be a $m \times n$ matrix over \mathbb{C} . If $A = [a_{ij}]$ then the conjugate of A, denoted by \overline{A} , is the matrix $B \ B = [b_{ij}]$ with $b_{ij} = \overline{a}_{ij}$.

• Let
$$A = \begin{bmatrix} 1 & 4+3i & i \\ 0 & 1 & i-2 \end{bmatrix}$$
. Then $\bar{A} = \begin{bmatrix} 1 & 4-3i & -i \\ 0 & 1 & -i-2 \end{bmatrix}$
• Let $A = \begin{bmatrix} 1+i & 2-3i & 4 \\ 7+2i & -i & 3-2i \end{bmatrix}$. Then
 $\bar{A} = \begin{bmatrix} 1-i & 2+3i & 4 \\ 7-2i & i & 3+2i \end{bmatrix}$

• A square matrix $A = [a_{ij}]$ is called Hermitian Matrix, if every i-j th element of A is equal to conjugate complex j-i th element of A.

• In other words
$$a_{ij} = \bar{a}_{ji}$$
.

Example:
$$\begin{bmatrix} 1 & 2+3i & 3+i \\ 2-3i & 2 & 1-2i \\ 3-i & 1+2i & 5 \end{bmatrix}$$

- Hence all the elements of the principal diagonal are real.
- A necessary and sufficient condition for a matrix A to be Hermitian is that $A = A^{\theta}$

Hermitian Matrix: Example

- Prove the following:
 - (i) $(A^{\theta})^{\theta} = A$ • (ii) $(A + B)^{\theta} = A^{\theta} + B^{\theta}$ (...) $(A + B)^{\theta} = A^{\theta} + B^{\theta}$
 - (iii) $(kA)^{\theta} = \bar{k}A^{\theta}$
 - (iv) $(AB)^{\theta} = B^{\theta} \cdot A^{\theta}$
- Solution:

• (i)
$$(A^{\theta})^{\theta} = [\{\overline{(A)}'\}'] = [A]$$

• (ii) $(A+B)^{\theta} = (\overline{A}+\overline{B})' = (\overline{A}+\overline{B})' = (\overline{A})' + (\overline{B})' = A^{\theta} + B^{\theta}$
• (iii) $(kA)^{\theta} = (\overline{kA})' = (\overline{kA})' = \overline{k}(\overline{A})' = \overline{k}A^{\theta}$
• $(AB)^{\theta} = (\overline{AB})' = (\overline{A} \cdot \overline{B})' = (\overline{B})' \cdot (\overline{A})' = B^{\theta} \cdot A^{\theta}$

Hermitian Matrix: Example

• Prove the matrix
$$A = \begin{bmatrix} 1 & 1-i & 2\\ 1+i & 3 & i\\ 2 & -i & 0 \end{bmatrix}$$
 is Hermitian.
• Solution: $\overline{A} = \begin{bmatrix} 1 & 1+i & 2\\ 1-i & 3 & -i\\ 2 & i & 0 \end{bmatrix}$
and $\overline{A}' = \begin{bmatrix} 1 & 1-i & 2\\ 1+i & 3 & i\\ 2 & -i & 0 \end{bmatrix}$
 $\implies A^{\theta} = A$. Hence A is Hermitian matrix.

æ

Skew-Hermitian Matrix

- A square matrix A = [a_{ij}] will be called a Skew Hermitian Matrix, if every i-j th element of A is equal to negative conjugate complex j-i th element of A.
- In other words $a_{ij} = -\bar{a}_{ji}$. All the elements in the principal diagonal will be of the form $a_{ii} = -\bar{a}_{ii}$

$$\begin{aligned} a_{ij} + \bar{a}_{ji} &= 0. \\ \text{If } a_{ii} &= a + ib \\ \text{then } \bar{a}_{ii} &= a - ib \\ \text{Therefore } (a + ib) + (a - ib) &= 0 \text{ or } a = 0 \\ \text{So } a_{ii} \text{ is pure imaginary or } a_{ii} &= 0. \end{aligned}$$

Example:
$$\begin{bmatrix} i & 2-3i & 4+5i \\ -(2+3i) & 0 & 2i \\ -(4-5i) & 2i & -3i \end{bmatrix}$$

Skew-Hermitian Matrix

- Hence all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure imaginary.
- The necessary and sufficient condition for a matrix A to be Skew Hermitian is that

•
$$A^{\theta} = -A$$

• $(\bar{A})' = -A$

• Where A^{θ} is the transpose of the conjugate of a matrix A.

Skew-Hermitian Matrix: example

• Show that
$$A = \begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix}$$
 is skew-Hermitian matrix.
• Solution: $\overline{A} = \begin{bmatrix} i & 3-2i & -2+i \\ -3-2i & 0 & 3+4i \\ 2+i & -3+4i & 2i \end{bmatrix}$
 $(\overline{A})' = \begin{bmatrix} i & -3-2i & 2+i \\ 3-2i & 0 & -3+4i \\ -2+i & 3+4i & 2i \end{bmatrix}$
 $\because A^{\theta} = (\overline{A})'$
 $A^{\theta} = \begin{bmatrix} i & -3-2i & 2+i \\ 3-2i & 0 & -3+4i \\ 2-2+i & 3+4i & 2i \end{bmatrix} =$
 $-\begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix} = -A$
 $A^{\theta} = -A \implies$ is skew-Hermitian matrix.

æ

- If the determinant of the matrix is zero, then the matrix is known singular matrix.
- Example: If $|A| = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, then A is a singular matrices.
- A non-singular matrix is a square one whose determinant is not zero.
- The rank of a matrix [A] is equal to the order of the largest non-singular submatrix of [A]. It follows that a non-singular square matrix of $n \times n$ has a rank of n. Thus, a non-singular matrix is also known as a full rank matrix. For a non-square [A] of $m \times n$, where m > n, full rank means only n columns are independent.

The trace of a square matrix is the sum of its diagonal elements.

Definition: Let A be a n × n matrix. Then, its trace, denoted by trace(A) or tr(A), is the sum of its diagonal elements.

$$trA = \sum_{n=1}^{n} A_{nn}$$

Example: Define the matrix $A = \begin{bmatrix} 2 & 1 & 5 \\ 2 & 3 & 4 \\ 0 & 1 & 0 \end{bmatrix}$ Then, its trace is

$$tr(A) = A_{11} + A_{22} + A_{33} = 2 + 3 + 0 = 5$$

- Trace of a sum: The trace of a sum of two matrices is equal to the sum of their trace.
- Proposition: Let A and B be two $n \times n$ matrices. Then

$$tr(A+B) = tr(A) + tr(B)$$

• Proof:

$$tr(A+B) = \sum_{n=1}^{n} (A+B)_{nn}$$

= $\sum_{n=1}^{n} (A_{nn}+B_{nn})$
= $\sum_{n=1}^{n} A_{nn} + \sum_{n=1}^{n} B_{nn}$
= $tr(a) + tr(B)$

Properties of trace of a matrix

• Trace of a scalar multiple:

Let A be a $n \times n$ matrix and α a scalar. Then $tr(\alpha A) = \alpha tr(A)$

• Proof:

$$tr(\alpha A) = \sum_{n=1}^{n} (\alpha A)_{nn}$$
$$= \sum_{n=1}^{n} \alpha A_{nn}$$
$$= \alpha \sum_{n=1}^{n} A_{nn}$$
$$= \alpha tr(A)$$

▶ ∢ ≣

э

Some other properties

- Let A and B be two K × K matrices and α and β two scalars.
 tr(αA + βB) = αtr(A) + βtr(B)
- $tr(A^T) = tr(A)$
- Let A be a $K \times L$ matrix and B be an $L \times K$ matrix. Then tr(AB) = tr(BA)
- Assignment: Prove the above relations.

Exercise:

Write matrix (A) given below as the sum of a symmetric and a skew ۲ symmetric matrix. $A = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3 \end{bmatrix}$ • If $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 2 & -1 \end{bmatrix}$, obtain the product AB and explain why BA is not defined. • If If $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ Verify that (AB)C = A(BC) and A(B + C) = AB + AC. • Determine the values of α , β , γ when $\begin{vmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{vmatrix}$ is orthogonal. • For what values of x, the matrix $\begin{bmatrix} 3-x & 2 & 2\\ 2 & 4-x & 1\\ -2 & -4 & -1-x \end{bmatrix}$ is singular?

Books Suggested:

- Mathematical Methods for Physicists: A comprehensive Guide; ARFKEN, WEBER, and HARRIS, 7th Edition.
- Advanced Engineering mathematics; H.K. Dass
- Taboga, Marco (2017). "Trace of a matrix", Lectures on matrix algebra.