More on matrices

Soma Mandal
Department of Physics, Government Girls' General Degree College

January 25, 2021

SEMESTER-I Paper: PHS-A-CC-1-1-TH

Conjugate of a Matrix

Let A be a $m \times n$ matrix over \mathbb{C}. If $A=\left[a_{i j}\right]$ then the conjugate of A, denoted by \bar{A}, is the matrix $B B=\left[b_{i j}\right]$ with $b_{i j}=\bar{a}_{i j}$.

- Let $A=\left[\begin{array}{ccc}1 & 4+3 i & i \\ 0 & 1 & i-2\end{array}\right]$. Then $\bar{A}=\left[\begin{array}{ccc}1 & 4-3 i & -i \\ 0 & 1 & -i-2\end{array}\right]$
- Let $\mathrm{A}=\left[\begin{array}{ccc}1+i & 2-3 i & 4 \\ 7+2 i & -i & 3-2 i\end{array}\right]$. Then

$$
\bar{A}=\left[\begin{array}{ccc}
1-i & 2+3 i & 4 \\
7-2 i & i & 3+2 i
\end{array}\right]
$$

Hermitian Matrix

- A square matrix $A=\left[a_{i j}\right]$ is called Hermitian Matrix, if every $i-j$ th element of A is equal to conjugate complex $j-i$ th element of A.
- In other words $a_{i j}=\bar{a}_{j i}$.

Example: $\left[\begin{array}{ccc}1 & 2+3 i & 3+i \\ 2-3 i & 2 & 1-2 i \\ 3-i & 1+2 i & 5\end{array}\right]$

- Hence all the elements of the principal diagonal are real.
- A necessary and sufficient condition for a matrix A to be Hermitian is that $A=A^{\theta}$

Hermitian Matrix: Example

- Prove the following:
- (i) $\left(A^{\theta}\right)^{\theta}=A$
- (ii) $(A+B)^{\theta}=A^{\theta}+B^{\theta}$
- (iii) $(k A)^{\theta}=\bar{k} A^{\theta}$
- (iv) $(A B)^{\theta}=B^{\theta} \cdot A^{\theta}$
- Solution:
- (i) $\left(A^{\theta}\right)^{\theta}=\overline{\left[\left\{\overline{(A)^{\prime}}\right\}^{\prime}\right]}=[A]$
- (ii) $(A+B)^{\theta}=(\overline{A+B})^{\prime}=(\bar{A}+\bar{B})^{\prime}=(\bar{A})^{\prime}+(\bar{B})^{\prime}=A^{\theta}+B^{\theta}$
- $(\mathrm{iii})(k A)^{\theta}=(\overline{k A})^{\prime}=(\overline{k A})^{\prime}=\bar{k}(\bar{A})^{\prime}=\bar{k} A^{\theta}$
- $(A B)^{\theta}=(\overline{A B})^{\prime}=(\bar{A} \cdot \bar{B})^{\prime}=(\bar{B})^{\prime} \cdot(\bar{A})^{\prime}=B^{\theta} \cdot A^{\theta}$

Hermitian Matrix: Example

- Prove the matrix $A=\left[\begin{array}{ccc}1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0\end{array}\right]$ is Hermitian.
- Solution: $\bar{A}=\left[\begin{array}{ccc}1 & 1+i & 2 \\ 1-i & 3 & -i \\ 2 & i & 0\end{array}\right]$
and $\bar{A}^{\prime}=\left[\begin{array}{ccc}1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0\end{array}\right]$
$\Longrightarrow A^{\theta}=A$. Hence A is Hermitian matrix.

Skew-Hermitian Matrix

- A square matrix $A=\left[a_{i j}\right]$ will be called a Skew Hermitian Matrix, if every $i-j$ th element of A is equal to negative conjugate complex j-i th element of A.
- In other words $a_{i j}=-\bar{a}_{j j}$. All the elements in the principal diagonal will be of the form $a_{i j}=-\bar{a}_{j i}$

$$
a_{i j}+\bar{a}_{j i}=0 .
$$

If $a_{i i}=a+i b$
then $\bar{a}_{i i}=a-i b$
Therefore $(a+i b)+(a-i b)=0$ or $a=0$
So $a_{i i}$ is pure imaginary or $a_{i i}=0$.
Example: $\left[\begin{array}{ccc}i & 2-3 i & 4+5 i \\ -(2+3 i) & 0 & 2 i \\ -(4-5 i) & 2 i & -3 i\end{array}\right]$

Skew-Hermitian Matrix

- Hence all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure imaginary.
- The necessary and sufficient condition for a matrix A to be Skew Hermitian is that
- $A^{\theta}=-A$
- $(\bar{A})^{\prime}=-A$
- Where A^{θ} is the transpose of the conjugate of a matrix A.

Skew-Hermitian Matrix: example

- Show that $A=\left[\begin{array}{ccc}-i & 3+2 i & -2-i \\ -3+2 i & 0 & 3-4 i \\ 2-i & -3-4 i & -2 i\end{array}\right]$ is skew-Hermitian matrix.
- Solution: $\bar{A}=\left[\begin{array}{ccc}i & 3-2 i & -2+i \\ -3-2 i & 0 & 3+4 i \\ 2+i & -3+4 i & 2 i\end{array}\right]$
$(\bar{A})^{\prime}=\left[\begin{array}{ccc}i & -3-2 i & 2+i \\ 3-2 i & 0 & -3+4 i \\ -2+i & 3+4 i & 2 i\end{array}\right]$
$\because A^{\theta}=(\bar{A})^{\prime}$
$A^{\theta}=\left[\begin{array}{ccc}i & -3-2 i & 2+i \\ 3-2 i & 0 & -3+4 i \\ -2+i & 3+4 i & 2 i\end{array}\right]=$
$-\left[\begin{array}{ccc}-i & 3+2 i & -2-i \\ -3+2 i & 0 & 3-4 i \\ 2-i & -3-4 i & -2 i\end{array}\right]=-A$
$A^{\theta}=-A \Longrightarrow$ is skew-Hermitian matrix.

Singular Matrix and non-singular Matrix

- If the determinant of the matrix is zero, then the matrix is known singular matrix.
- Example: If $|A|=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$, then A is a singular matrices.
- A non-singular matrix is a square one whose determinant is not zero.
- The rank of a matrix $[A]$ is equal to the order of the largest non-singular submatrix of $[A]$. It follows that a non-singular square matrix of $n \times n$ has a rank of n. Thus, a non-singular matrix is also known as a full rank matrix. For a non-square [A] of $m \times n$, where $m>n$, full rank means only n columns are independent.

Trace of a Matrix

The trace of a square matrix is the sum of its diagonal elements.

- Definition: Let A be a $n \times n$ matrix. Then, its trace, denoted by $\operatorname{trace}(A)$ or $\operatorname{tr}(A)$, is the sum of its diagonal elements.

$$
\operatorname{tr} A=\sum_{n=1}^{n} A_{n n}
$$

Example: Define the matrix $A=\left[\begin{array}{lll}2 & 1 & 5 \\ 2 & 3 & 4 \\ 0 & 1 & 0\end{array}\right]$ Then, its trace is

$$
\operatorname{tr}(A)=A_{11}+A_{22}+A_{33}=2+3+0=5
$$

- Trace of a sum: The trace of a sum of two matrices is equal to the sum of their trace.
- Proposition: Let A and B be two $n \times n$ matrices. Then

$$
\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)
$$

- Proof:

$$
\begin{aligned}
\operatorname{tr}(A+B) & =\sum_{n=1}^{n}(A+B)_{n n} \\
& =\sum_{n=1}^{n}\left(A_{n n}+B_{n n}\right) \\
& =\sum_{n=1}^{n} A_{n n}+\sum_{n=1}^{n} B_{n n} \\
& =\operatorname{tr}(a)+\operatorname{tr}(B)
\end{aligned}
$$

- Trace of a scalar multiple:

Let A be a $n \times n$ matrix and α a scalar.
Then $\operatorname{tr}(\alpha A)=\alpha \operatorname{tr}(A)$

- Proof:

$$
\begin{aligned}
\operatorname{tr}(\alpha A) & =\sum_{n=1}^{n}(\alpha A)_{n n} \\
& =\sum_{n=1}^{n} \alpha A_{n n} \\
& =\alpha \sum_{n=1}^{n} A_{n n} \\
& =\alpha \operatorname{tr}(A)
\end{aligned}
$$

Some other properties

- Let A and B be two $K \times K$ matrices and α and β two scalars. $\operatorname{tr}(\alpha A+\beta B)=\alpha \operatorname{tr}(A)+\beta \operatorname{tr}(B)$
- $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$
- Let A be a $K \times L$ matrix and B be an $L \times K$ matrix. Then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
- Assignment: Prove the above relations.

Exercise:

- Write matrix (A) given below as the sum of a symmetric and a skew
symmetric matrix. $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3\end{array}\right]$
- If $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]$, obtain the product $A B$ and explain why $B A$ is not defined.
- If If $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}-3 & 1 \\ 2 & 0\end{array}\right]$

Verify that $(A B) C=A(B C)$ and $A(B+C)=A B+A C$.

- Determine the values of α, β, γ when $\left[\begin{array}{ccc}0 & 2 \beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma\end{array}\right]$ is orthogonal.
- For what values of x, the matrix $\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular?

Books Suggested:

- Mathematical Methods for Physicists: A comprehensive Guide; ARFKEN, WEBER, and HARRIS, 7th Edition.
- Advanced Engineering mathematics; H.K. Dass
- Taboga, Marco (2017). "Trace of a matrix", Lectures on matrix algebra.

