Adjoint and Inverse of a Matrix

Soma Mandal

Department of Physics,
Government Girls' General Degree College

January 28, 2021

SEMESTER-I Paper: PHS-A-CC-1-1-TH

Adjoint of a square Matrix

Let the determinant of the square matrix A be $|A|$.

- If $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$. Then $|A|=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
- The matrix formed by the co-factors of the element in $|A|$ is

$$
\left[\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right]
$$

Adjoint of a square matrix

- $A_{1}=\left|\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right|=b_{2} c_{3}-b_{3} c_{2}$
- $A_{3}=\left|\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right|=b_{1} c_{2}-b_{2} c_{1}$
- $B_{2}=\left|\begin{array}{ll}a_{1} & a_{3} \\ c_{1} & c_{3}\end{array}\right|=a_{1} c_{3}-a_{3} c_{1}$
- $C_{1}=\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right|=a_{2} b_{3}-a_{3} b_{2}$
- $C_{3}=\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$
- $A_{2}=-\left|\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right|=-b_{1} c_{3}+b_{3} c_{1}$
- $B_{1}=-\left|\begin{array}{ll}a_{2} & a_{3} \\ c_{2} & c_{3}\end{array}\right|=-a_{2} c_{3}+a_{3} c_{2}$
- $B_{3}=-\left|\begin{array}{ll}a_{1} & a_{2} \\ c_{1} & c_{2}\end{array}\right|=-a_{1} c_{2}+a_{2} c_{1}$
- $C_{2}=-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right|=-a_{1} b_{3}+a_{3} b_{1}$

Then the transpose of the matrix of the cofactors
$\left[\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right]$ is called the adjoint of the matrix A and is written as adj A.

Property of adjoint matrix

The product of a matrix A and its adjoint is equal to unit matrix multiplied by the determinant.
Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & C_{2} & C_{3}\end{array}\right]$ and $\operatorname{adj} A=\left[\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right]$.
$A \cdot(\operatorname{adj} A)=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & C_{3}\end{array}\right] \times\left[\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right]$
$=\left[\begin{array}{lll}a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3} & a_{1} B_{1}+a_{2} B_{2}+a_{3} B_{3} & a_{1} C_{1}+a_{2} C_{2}+a_{3} C_{3} \\ b_{1} A_{1}+b_{2} A_{2}+b_{3} A_{3} & b_{1} B_{1}+b_{2} B_{2}+b_{3} B_{3} & b_{1} C_{1}+b_{2} C_{2}+b_{3} C_{3} \\ c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3} & c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3} & c_{1} C_{1}+c_{2} C_{2}+c_{3} C_{3}\end{array}\right]$
$\left[\begin{array}{ccc}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right]=|A|\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=|A| I$

Inverse of a Matrix

- If A and B are two square matrices of the same order, such that $A B=B A=I$ then B is called the inverse of A i.e.
$B=A^{-1}$ and A is the inverse of B.
- Condition for a square matrix A to possess an inverse is that matrix A is non-singular, i.e. $|A| \neq 0$.
If A is a square matrix ans B be its inverse, then $A B=I$.
Taking determinant of both sides $|A B|=\mid I$ or $|A \| B|=I$.
From this relation it is clear that $|A| \neq 0$
i.e. the matrix A is non-singular.

Inverse of a matrix

To find the inverse matrix with the help of adjoint matrix

- we know that $A \cdot \operatorname{adj}(A)=|A| I$

$$
\frac{A \cdot \operatorname{adj}(A)}{|A|}=1
$$

provided $|A| \neq 0$.

- $A A^{-1}=I$

$$
\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)
$$

Solved problems

- if $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, find A^{-1}.
- Solution: $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
$|A|=3(-3+4)+3(2-0)+4(-2-0)=3+6-8=1$.
The cofactor of elements of various rows of $|A|$ are

$$
\left[\begin{array}{ccc}
(-3+4) & (-2-0) & (-2-0) \\
(3-4) & (3-0) & (3-0) \\
(-12+12) & (-12+8) & (-9+6)
\end{array}\right]
$$

Solved problems...contd.

- The cofactor of elements of various rows of $|A|$ are

$$
\left[\begin{array}{ccc}
(-3+4) & (-2-0) & (-2-0) \\
(3-4) & (3-0) & (3-0) \\
(-12+12) & (-12+8) & (-9+6)
\end{array}\right]
$$

Therefore the matrix formed by the co-factor of $|A|$ is

$$
\left[\begin{array}{ccc}
1 & -2 & -2 \\
-1 & 3 & 3 \\
0 & -4 & -3
\end{array}\right]
$$

$$
\operatorname{adj}(A)=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]
$$

$$
\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)=\frac{1}{1}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]
$$

Solved problems

- Prove that the inverse of a matrix is unique.

We suppose that B and C are two inverse matrices of a given matrix A.
Then $A B=B A=l \because B$ is inverse of A.
and $A C=C A=I \because C$ is inverse of A.
But $C \cdot(A B)=(C A) \cdot B$
$\Longrightarrow C \cdot I=I \cdot B$ or $C=B$
Hence, the inverse of matrix A is unique.

Exercise:

- Find the adjoint of the following matrices (i) $\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$
(ii) $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 9 & 3 \\ 1 & 4 & 2\end{array}\right]$
- If If $A=\left[\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 1 & 3 \\ 0 & 3 & 2 \\ 1 & 1 & 1\end{array}\right]$ show that $P^{-1} A P=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
- Find the condition of k such that the matrix $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ 3 & k & 6 \\ -1 & 5 & 1\end{array}\right]$ has an inverse. Obtain A^{-1} for $k=1$
- Prove that $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.

Books Suggested:

- Mathematical Methods for Physicists: A comprehensive Guide; ARFKEN, WEBER, and HARRIS, 7th Edition.
- Advanced Engineering mathematics; H.K. Dass

