Adjoint and Inverse of a Matrix

Soma Mandal

Department of Physics, Government Girls' General Degree College

January 28, 2021

SEMESTER-I Paper: PHS-A-CC-1-1-TH

Adjoint of a square Matrix

Let the determinant of the square matrix A be |A|.

• If A=
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
. Then $|A| = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

• The matrix formed by the co-factors of the element in | A | is

$$\begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}.$$

Adjoint of a square matrix

•
$$A_1 = \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} = b_2 c_3 - b_3 c_2$$

• $A_3 = \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = b_1 c_2 - b_2 c_1$
• $B_2 = \begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix} = a_1 c_3 - a_3 c_1$
• $C_1 = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} = a_2 b_3 - a_3 b_2$
• $C_3 = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$
Then the transpose of the matrix of the cofactors

•
$$A_2 = -\begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} = -b_1c_3 + b_3c_1$$

• $B_1 = -\begin{vmatrix} a_2 & a_3 \\ c_2 & c_3 \end{vmatrix} = -a_2c_3 + a_3c_2$
• $B_3 = -\begin{vmatrix} a_1 & a_2 \\ c_1 & c_2 \end{vmatrix} = -a_1c_2 + a_2c_1$
• $C_2 = -\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} = -a_1b_3 + a_3b_1$

イロト イヨト イヨト イヨト

æ

$$\begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{bmatrix}$$
 is called the adjoint of the matrix A and is written as adj A.

Property of adjoint matrix

The product of a matrix A and its adjoint is equal to unit matrix multiplied by the determinant.

Let
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 and $adj \ A = \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{bmatrix}$.
 $A \cdot (adj \ A) = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \times \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{bmatrix}$
 $= \begin{bmatrix} a_1A_1 + a_2A_2 + a_3A_3 & a_1B_1 + a_2B_2 + a_3B_3 & a_1C_1 + a_2C_2 + a_3C_3 \\ b_1A_1 + b_2A_2 + b_3A_3 & b_1B_1 + b_2B_2 + b_3B_3 & b_1C_1 + b_2C_2 + b_3C_3 \\ c_1A_1 + c_2A_2 + c_3A_3 & c_1B_1 + c_2B_2 + c_3B_3 & c_1C_1 + c_2C_2 + c_3C_3 \end{bmatrix}$
 $\begin{bmatrix} |\ A | & 0 & 0 \\ 0 & |\ A | & 0 \\ 0 & 0 & |\ A | \end{bmatrix} = |\ A | \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |\ A | I$

Inverse of a Matrix

- If A and B are two square matrices of the same order, such that AB = BA = I then B is called the inverse of A i.e.
 B = A⁻¹ and A is the inverse of B.
- Condition for a square matrix A to possess an inverse is that matrix A is non-singular, i.e. | A |≠ 0.
 If A is a square matrix ans B be its inverse, then AB = I.
 Taking determinant of both sides | AB |=| I | or | A || B |= I.
 From this relation it is clear that | A |≠ 0
 i.e. the matrix A is non-singular.

To find the inverse matrix with the help of adjoint matrix

• we know that $A \cdot adj(A) = |A| |I|$

$$\frac{A \cdot adj(A)}{\mid A \mid} = I$$

provided $|A| \neq 0$.

• $AA^{-}1 = I$

$$\therefore A^{-1} = \frac{1}{\mid A \mid} adj(A)$$

(*) *) *) *)

Solved problems

• if
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, find A^{-1} .
• Solution: $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$
 $|A| = 3(-3+4) + 3(2-0) + 4(-2-0) = 3+6-8 = 1$.
The cofactor of elements of various rows of $|A|$ are
 $\begin{bmatrix} (-3+4) & (-2-0) & (-2-0) \\ (3-4) & (3-0) & (3-0) \\ (-12+12) & (-12+8) & (-9+6) \end{bmatrix}$

2

Solved problems...contd.

• The cofactor of elements of various rows of | A | are $\begin{bmatrix} (-3+4) & (-2-0) & (-2-0) \\ (3-4) & (3-0) & (3-0) \\ (-12+12) & (-12+8) & (-9+6) \end{bmatrix}$ Therefore the matrix formed by the co-factor of |A| is $\begin{vmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{vmatrix}$ $adj(A) = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{|A|} adj(A) = \frac{1}{1} \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$

Solved problems

• Prove that the inverse of a matrix is unique.

We suppose that B and C are two inverse matrices of a given matrix A.

Then AB = BA = I :: B is inverse of A. and AC = CA = I :: C is inverse of A. But $C \cdot (AB) = (CA) \cdot B$ $\implies C \cdot I = I \cdot B$ or C = BHence, the inverse of matrix A is unique.

Exercise:

• Find the adjoint of the following matrices (i) $\begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

(*ii*)
$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 9 & 3 \\ 1 & 4 & 2 \end{bmatrix}$$

• If If $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 3 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ show that $P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Find the condition of k such that the matrix A = ¹ 3 4 3 k 6 -1 5 1 has an inverse. Obtain A⁻¹ for k = 1
Prove that (A⁻¹)^T = (A^T)⁻¹.

Books Suggested:

- Mathematical Methods for Physicists: A comprehensive Guide; ARFKEN, WEBER, and HARRIS, 7th Edition.
- Advanced Engineering mathematics; H.K. Dass